BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

487 related articles for article (PubMed ID: 30054595)

  • 1. CRISPR-Cas9 genome editing in human cells occurs via the Fanconi anemia pathway.
    Richardson CD; Kazane KR; Feng SJ; Zelin E; Bray NL; Schäfer AJ; Floor SN; Corn JE
    Nat Genet; 2018 Aug; 50(8):1132-1139. PubMed ID: 30054595
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NHEJ-Mediated Repair of CRISPR-Cas9-Induced DNA Breaks Efficiently Corrects Mutations in HSPCs from Patients with Fanconi Anemia.
    Román-Rodríguez FJ; Ugalde L; Álvarez L; Díez B; Ramírez MJ; Risueño C; Cortón M; Bogliolo M; Bernal S; March F; Ayuso C; Hanenberg H; Sevilla J; Rodríguez-Perales S; Torres-Ruiz R; Surrallés J; Bueren JA; Río P
    Cell Stem Cell; 2019 Nov; 25(5):607-621.e7. PubMed ID: 31543367
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetics and Fidelity of the Repair of Cas9-Induced Double-Strand DNA Breaks.
    Brinkman EK; Chen T; de Haas M; Holland HA; Akhtar W; van Steensel B
    Mol Cell; 2018 Jun; 70(5):801-813.e6. PubMed ID: 29804829
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Knock-in of large reporter genes in human cells via CRISPR/Cas9-induced homology-dependent and independent DNA repair.
    He X; Tan C; Wang F; Wang Y; Zhou R; Cui D; You W; Zhao H; Ren J; Feng B
    Nucleic Acids Res; 2016 May; 44(9):e85. PubMed ID: 26850641
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strategies for Applying Nonhomologous End Joining-Mediated Genome Editing in Prokaryotes.
    Cui Y; Dong H; Ma Y; Zhang D
    ACS Synth Biol; 2019 Oct; 8(10):2194-2202. PubMed ID: 31525995
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DNA Repair Pathway Choices in CRISPR-Cas9-Mediated Genome Editing.
    Xue C; Greene EC
    Trends Genet; 2021 Jul; 37(7):639-656. PubMed ID: 33896583
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effective CRISPR/Cas9-mediated correction of a Fanconi anemia defect by error-prone end joining or templated repair.
    van de Vrugt HJ; Harmsen T; Riepsaame J; Alexantya G; van Mil SE; de Vries Y; Bin Ali R; Huijbers IJ; Dorsman JC; Wolthuis RMF; Te Riele H
    Sci Rep; 2019 Jan; 9(1):768. PubMed ID: 30683899
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CRISPR/Cas9-Mediated Correction of the FANCD1 Gene in Primary Patient Cells.
    Skvarova Kramarzova K; Osborn MJ; Webber BR; DeFeo AP; McElroy AN; Kim CJ; Tolar J
    Int J Mol Sci; 2017 Jun; 18(6):. PubMed ID: 28613254
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ectopic expression of RAD52 and dn53BP1 improves homology-directed repair during CRISPR-Cas9 genome editing.
    Paulsen BS; Mandal PK; Frock RL; Boyraz B; Yadav R; Upadhyayula S; Gutierrez-Martinez P; Ebina W; Fasth A; Kirchhausen T; Talkowski ME; Agarwal S; Alt FW; Rossi DJ
    Nat Biomed Eng; 2017 Nov; 1(11):878-888. PubMed ID: 31015609
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exogenous gene integration mediated by genome editing technologies in zebrafish.
    Morita H; Taimatsu K; Yanagi K; Kawahara A
    Bioengineered; 2017 May; 8(3):287-295. PubMed ID: 28272984
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gene editing in clinical isolates of Candida parapsilosis using CRISPR/Cas9.
    Lombardi L; Turner SA; Zhao F; Butler G
    Sci Rep; 2017 Aug; 7(1):8051. PubMed ID: 28808289
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gene Editing With TALEN and CRISPR/Cas in Rice.
    Bi H; Yang B
    Prog Mol Biol Transl Sci; 2017; 149():81-98. PubMed ID: 28712502
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CRISPR-Cas9 fusion to dominant-negative 53BP1 enhances HDR and inhibits NHEJ specifically at Cas9 target sites.
    Jayavaradhan R; Pillis DM; Goodman M; Zhang F; Zhang Y; Andreassen PR; Malik P
    Nat Commun; 2019 Jun; 10(1):2866. PubMed ID: 31253785
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The democratization of gene editing: Insights from site-specific cleavage and double-strand break repair.
    Jasin M; Haber JE
    DNA Repair (Amst); 2016 Aug; 44():6-16. PubMed ID: 27261202
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Harnessing accurate non-homologous end joining for efficient precise deletion in CRISPR/Cas9-mediated genome editing.
    Guo T; Feng YL; Xiao JJ; Liu Q; Sun XN; Xiang JF; Kong N; Liu SC; Chen GQ; Wang Y; Dong MM; Cai Z; Lin H; Cai XJ; Xie AY
    Genome Biol; 2018 Oct; 19(1):170. PubMed ID: 30340517
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CRISPR/Cas-based precision genome editing via microhomology-mediated end joining.
    Van Vu T; Thi Hai Doan D; Kim J; Sung YW; Thi Tran M; Song YJ; Das S; Kim JY
    Plant Biotechnol J; 2021 Feb; 19(2):230-239. PubMed ID: 33047464
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design and Validation of CRISPR/Cas9 Systems for Targeted Gene Modification in Induced Pluripotent Stem Cells.
    Lee CM; Zhu H; Davis TH; Deshmukh H; Bao G
    Methods Mol Biol; 2017; 1498():3-21. PubMed ID: 27709565
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient Genome Engineering of a Virulent Klebsiella Bacteriophage Using CRISPR-Cas9.
    Shen J; Zhou J; Chen GQ; Xiu ZL
    J Virol; 2018 Sep; 92(17):. PubMed ID: 29899105
    [No Abstract]   [Full Text] [Related]  

  • 19. [Small Molecular Inhibitors of DNA Double Strand Break Repair Pathways Increase the ANTI-HBV Activity of CRISPR/Cas9].
    Kostyusheva AP; Kostyushev DS; Brezgin SA; Zarifyan DN; Volchkova EV; Chulanov VP
    Mol Biol (Mosk); 2019; 53(2):311-323. PubMed ID: 31099781
    [TBL] [Abstract][Full Text] [Related]  

  • 20. qEva-CRISPR: a method for quantitative evaluation of CRISPR/Cas-mediated genome editing in target and off-target sites.
    Dabrowska M; Czubak K; Juzwa W; Krzyzosiak WJ; Olejniczak M; Kozlowski P
    Nucleic Acids Res; 2018 Sep; 46(17):e101. PubMed ID: 29878242
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.