BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

847 related articles for article (PubMed ID: 30054615)

  • 1. Serial Combined Wide-Field Optical Coherence Tomography Maps for Detection of Early Glaucomatous Structural Progression.
    Lee WJ; Kim TJ; Kim YK; Jeoung JW; Park KH
    JAMA Ophthalmol; 2018 Oct; 136(10):1121-1127. PubMed ID: 30054615
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integrating Macular Ganglion Cell Inner Plexiform Layer and Parapapillary Retinal Nerve Fiber Layer Measurements to Detect Glaucoma Progression.
    Hou HW; Lin C; Leung CK
    Ophthalmology; 2018 Jun; 125(6):822-831. PubMed ID: 29433852
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glaucomatous progression in the retinal nerve fibre and retinal ganglion cell-inner plexiform layers determined using optical coherence tomography-guided progression analysis.
    Hwang YH; Kim Y; Chung JK; Lee KB
    Clin Exp Optom; 2018 Sep; 101(5):666-673. PubMed ID: 29388255
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ganglion Cell-Inner Plexiform Layer Change Detected by Optical Coherence Tomography Indicates Progression in Advanced Glaucoma.
    Shin JW; Sung KR; Lee GC; Durbin MK; Cheng D
    Ophthalmology; 2017 Oct; 124(10):1466-1474. PubMed ID: 28549518
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Patterns of glaucoma progression in retinal nerve fiber and macular ganglion cell-inner plexiform layer in spectral-domain optical coherence tomography.
    Kim HJ; Jeoung JW; Yoo BW; Kim HC; Park KH
    Jpn J Ophthalmol; 2017 Jul; 61(4):324-333. PubMed ID: 28374270
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of Topographic Scoring System for Identifying Glaucoma in Myopic Eyes: A Spectral-Domain OCT Study.
    Baek SU; Kim KE; Kim YK; Park KH; Jeoung JW
    Ophthalmology; 2018 Nov; 125(11):1710-1719. PubMed ID: 29887333
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Trend-based Analysis of Ganglion Cell-Inner Plexiform Layer Thickness Changes on Optical Coherence Tomography in Glaucoma Progression.
    Lee WJ; Kim YK; Park KH; Jeoung JW
    Ophthalmology; 2017 Sep; 124(9):1383-1391. PubMed ID: 28412067
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of glaucoma-diagnostic ability between wide-field swept-source OCT retinal nerve fiber layer maps and spectral-domain OCT.
    Lee WJ; Oh S; Kim YK; Jeoung JW; Park KH
    Eye (Lond); 2018 Sep; 32(9):1483-1492. PubMed ID: 29789659
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Patterns of Progressive Ganglion Cell-Inner Plexiform Layer Thinning in Glaucoma Detected by OCT.
    Shin JW; Sung KR; Park SW
    Ophthalmology; 2018 Oct; 125(10):1515-1525. PubMed ID: 29705057
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ability of cirrus high-definition spectral-domain optical coherence tomography clock-hour, deviation, and thickness maps in detecting photographic retinal nerve fiber layer abnormalities.
    Hwang YH; Kim YY; Kim HK; Sohn YH
    Ophthalmology; 2013 Jul; 120(7):1380-7. PubMed ID: 23541761
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combined Use of Retinal Nerve Fiber Layer and Ganglion Cell-Inner Plexiform Layer Event-based Progression Analysis.
    Lee WJ; Na KI; Ha A; Kim YK; Jeoung JW; Park KH
    Am J Ophthalmol; 2018 Dec; 196():65-71. PubMed ID: 30099036
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diagnostic Accuracy of Wide-Field Map from Swept-Source Optical Coherence Tomography for Primary Open-Angle Glaucoma in Myopic Eyes.
    Kim YW; Lee J; Kim JS; Park KH
    Am J Ophthalmol; 2020 Oct; 218():182-191. PubMed ID: 32574775
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Progression of retinal nerve fiber layer thinning in glaucoma assessed by cirrus optical coherence tomography-guided progression analysis.
    Na JH; Sung KR; Baek S; Lee JY; Kim S
    Curr Eye Res; 2013 Mar; 38(3):386-95. PubMed ID: 23441595
    [TBL] [Abstract][Full Text] [Related]  

  • 14. From Machine to Machine: An OCT-Trained Deep Learning Algorithm for Objective Quantification of Glaucomatous Damage in Fundus Photographs.
    Medeiros FA; Jammal AA; Thompson AC
    Ophthalmology; 2019 Apr; 126(4):513-521. PubMed ID: 30578810
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wide-field Trend-based Progression Analysis of Combined Retinal Nerve Fiber Layer and Ganglion Cell Inner Plexiform Layer Thickness: A New Paradigm to Improve Glaucoma Progression Detection.
    Wu K; Lin C; Lam AK; Chan L; Leung CK
    Ophthalmology; 2020 Oct; 127(10):1322-1330. PubMed ID: 32423768
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of macular GCIPL and peripapillary RNFL deviation maps for detection of glaucomatous eye with localized RNFL defect.
    Kim MJ; Park KH; Yoo BW; Jeoung JW; Kim HC; Kim DM
    Acta Ophthalmol; 2015 Feb; 93(1):e22-8. PubMed ID: 24965201
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diagnostic Ability of Wide-field Retinal Nerve Fiber Layer Maps Using Swept-Source Optical Coherence Tomography for Detection of Preperimetric and Early Perimetric Glaucoma.
    Lee WJ; Na KI; Kim YK; Jeoung JW; Park KH
    J Glaucoma; 2017 Jun; 26(6):577-585. PubMed ID: 28368998
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Localized Retinal Nerve Fiber Layer Defect Location Among Red-free Fundus Photographs, En Face Structural Images, and Cirrus HD-OCT Maps.
    Park JH; Yoo C; Kim YY
    J Glaucoma; 2019 Dec; 28(12):1054-1060. PubMed ID: 31790033
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of baseline test selection on glaucoma progression detection by optical coherence tomography-guided progression analysis.
    Kang DH; Hwang YH
    Br J Ophthalmol; 2021 Jun; 105(6):783-788. PubMed ID: 32586934
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Macular ganglion cell analysis for early detection of glaucoma.
    Hwang YH; Jeong YC; Kim HK; Sohn YH
    Ophthalmology; 2014 Aug; 121(8):1508-15. PubMed ID: 24702756
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 43.