BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 3005472)

  • 1. Interactions of lithium and protons with the sodium-proton exchanger of dog red blood cells.
    Parker JC
    J Gen Physiol; 1986 Feb; 87(2):189-200. PubMed ID: 3005472
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sodium-lithium exchange and sodium-proton exchange are mediated by the same transport system in sarcolemmal vesicles from bovine superior mesenteric artery.
    Kahn AM; Allen JC; Cragoe EJ; Shelat H
    Circ Res; 1989 Sep; 65(3):818-28. PubMed ID: 2548766
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Further evidence for coupling of sodium and proton movements in dog red blood cells.
    Funder J; Parker JC; Wieth JO
    Biochim Biophys Acta; 1987 May; 899(2):311-2. PubMed ID: 3034330
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetics and stoichiometry of the human red cell Na+/H+ exchanger.
    Semplicini A; Spalvins A; Canessa M
    J Membr Biol; 1989 Mar; 107(3):219-28. PubMed ID: 2541250
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interactions of external and internal H+ and Na+ with Na+/Na+ and Na+/H+ exchange of rabbit red cells: evidence for a common pathway.
    Morgan K; Canessa M
    J Membr Biol; 1990 Dec; 118(3):193-214. PubMed ID: 1963903
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cold activation of Na influx through the Na-H exchange pathway in guinea pig red cells.
    Zhao Z; Willis JS
    J Membr Biol; 1993 Jan; 131(1):43-53. PubMed ID: 8381873
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Na(+)-H+ and Na(+)-Li+ exchange are mediated by the same membrane transport protein in human red blood cells: an NMR investigation.
    Chi Y; Mo S; Mota de Freitas D
    Biochemistry; 1996 Sep; 35(38):12433-42. PubMed ID: 8823178
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interactions of sodium-proton exchange mechanism in dog red blood cells with N-phenylmaleimide.
    Parker JC; Glosson PS
    Am J Physiol; 1987 Jul; 253(1 Pt 1):C60-5. PubMed ID: 3037914
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Further studies of the volume-regulatory response of Amphiuma red cells in hypertonic media. Evidence for amiloride-sensitive Na/H exchange.
    Kregenow FM; Caryk T; Siebens AW
    J Gen Physiol; 1985 Oct; 86(4):565-84. PubMed ID: 2997365
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Amiloride-insensitive Na+-H+ exchange: a candidate mediator of erythrocyte Na+-Li+ countertransport.
    Zerbini G; Maestroni A; Mangili R; Pozza G
    J Am Soc Nephrol; 1998 Dec; 9(12):2203-11. PubMed ID: 9848774
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of Mg in the activation of Na-H exchange in dog red cells.
    Parker JC; Gitelman HJ; McManus TJ
    Am J Physiol; 1989 Nov; 257(5 Pt 1):C1038-41. PubMed ID: 2556931
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Volume-responsive sodium and proton movements in dog red blood cells.
    Parker JC; Castranova V
    J Gen Physiol; 1984 Sep; 84(3):379-401. PubMed ID: 6090579
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expression of the human sodium/proton exchanger NHE-1 in Xenopus laevis oocytes enhances sodium/proton exchange activity and establishes sodium/lithium countertransport.
    Busch S; Burckhardt BC; Siffert W
    Pflugers Arch; 1995 Apr; 429(6):859-69. PubMed ID: 7603840
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Volume-activated Na/H exchange activity in fetal and adult pig red cells: inhibition by cyclic AMP.
    Sergeant S; Sohn DH; Kim HD
    J Membr Biol; 1989 Aug; 109(3):209-20. PubMed ID: 2552123
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Na+-H+ exchange and pH regulation in red blood cells: role of uncatalyzed H2CO3 dehydration.
    Motais R; Fievet B; Garcia-Romeu F; Thomas S
    Am J Physiol; 1989 Apr; 256(4 Pt 1):C728-35. PubMed ID: 2539723
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Amiloride-sensitive sodium transport in lamprey red blood cells: evidence for two distinct transport pathways.
    Gusev GP; Ivanova TI
    Gen Physiol Biophys; 2004 Dec; 23(4):443-56. PubMed ID: 15815079
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Absence of significant sodium-hydrogen exchange by rabbit erythrocyte sodium-lithium countertransporter.
    Jennings ML; Adams-Lackey M; Cook KW
    Am J Physiol; 1985 Jul; 249(1 Pt 1):C63-8. PubMed ID: 4014452
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Difference between human red blood cell Na+-Li+ countertransport and renal Na+-H+ exchange.
    Kahn AM
    Hypertension; 1987 Jan; 9(1):7-12. PubMed ID: 2432011
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Can we use erythrocytes for the study of the activity of the ubiquitous Na+/H+ exchanger (NHE-1) in essential hypertension?
    Orlov SN; Kuznetsov SR; Pokudin NI; Tremblay J; Hamet P
    Am J Hypertens; 1998 Jul; 11(7):774-83. PubMed ID: 9683037
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Na+/Na+ exchange and Na+/H+ antiport in rabbit erythrocytes: two distinct transport systems.
    Escobales N; Figueroa J
    J Membr Biol; 1991 Feb; 120(1):41-9. PubMed ID: 1850486
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.