These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
901 related articles for article (PubMed ID: 30054779)
1. A hierarchical semi-supervised extreme learning machine method for EEG recognition. She Q; Hu B; Luo Z; Nguyen T; Zhang Y Med Biol Eng Comput; 2019 Jan; 57(1):147-157. PubMed ID: 30054779 [TBL] [Abstract][Full Text] [Related]
2. Multi-class motor imagery EEG classification using collaborative representation-based semi-supervised extreme learning machine. She Q; Zou J; Luo Z; Nguyen T; Li R; Zhang Y Med Biol Eng Comput; 2020 Sep; 58(9):2119-2130. PubMed ID: 32676841 [TBL] [Abstract][Full Text] [Related]
3. Sparse Representation-Based Extreme Learning Machine for Motor Imagery EEG Classification. She Q; Chen K; Ma Y; Nguyen T; Zhang Y Comput Intell Neurosci; 2018; 2018():9593682. PubMed ID: 30510569 [TBL] [Abstract][Full Text] [Related]
4. Double-Criteria Active Learning for Multiclass Brain-Computer Interfaces. She Q; Chen K; Luo Z; Nguyen T; Potter T; Zhang Y Comput Intell Neurosci; 2020; 2020():3287589. PubMed ID: 32256550 [TBL] [Abstract][Full Text] [Related]
5. EEG classification across sessions and across subjects through transfer learning in motor imagery-based brain-machine interface system. Zheng M; Yang B; Xie Y Med Biol Eng Comput; 2020 Jul; 58(7):1515-1528. PubMed ID: 32394192 [TBL] [Abstract][Full Text] [Related]
6. Using ELM-based weighted probabilistic model in the classification of synchronous EEG BCI. Tan P; Tan GZ; Cai ZX; Sa WP; Zou YQ Med Biol Eng Comput; 2017 Jan; 55(1):33-43. PubMed ID: 27099159 [TBL] [Abstract][Full Text] [Related]
7. An Adaptive EEG Classification Algorithm Based on CSSD and ELM_Kernel for Small Training Samples. Wang L; Lan Z; Wang Q; Bai X; Ma F J Healthc Eng; 2022; 2022():4509612. PubMed ID: 36619242 [TBL] [Abstract][Full Text] [Related]
8. Distributed semi-supervised learning algorithm based on extreme learning machine over networks using event-triggered communication scheme. Xie J; Liu S; Dai H Neural Netw; 2019 Nov; 119():261-272. PubMed ID: 31473577 [TBL] [Abstract][Full Text] [Related]
9. A novel deep learning approach for classification of EEG motor imagery signals. Tabar YR; Halici U J Neural Eng; 2017 Feb; 14(1):016003. PubMed ID: 27900952 [TBL] [Abstract][Full Text] [Related]
10. Online semi-supervised learning for motor imagery EEG classification. Zhang L; Li C; Zhang R; Sun Q Comput Biol Med; 2023 Oct; 165():107405. PubMed ID: 37678137 [TBL] [Abstract][Full Text] [Related]
11. Validating Deep Neural Networks for Online Decoding of Motor Imagery Movements from EEG Signals. Tayeb Z; Fedjaev J; Ghaboosi N; Richter C; Everding L; Qu X; Wu Y; Cheng G; Conradt J Sensors (Basel); 2019 Jan; 19(1):. PubMed ID: 30626132 [TBL] [Abstract][Full Text] [Related]
12. Subject-Independent Deep Architecture for EEG-Based Motor Imagery Classification. Sartipi S; Cetin M IEEE Trans Neural Syst Rehabil Eng; 2024; 32():718-727. PubMed ID: 38289842 [TBL] [Abstract][Full Text] [Related]
13. E-SAT: An extreme learning machine based self attention approach for decoding motor imagery EEG in subject-specific tasks. Abbasi MAA; Abbasi HF; Yu X; Aziz MZ; Yih NTJY; Fan Z J Neural Eng; 2024 Oct; ():. PubMed ID: 39374625 [TBL] [Abstract][Full Text] [Related]
14. EEG classification for motor imagery BCI using phase-only features extracted by independent component analysis. Qureshi MNI; Dongrae Cho ; Boreom Lee Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():2097-2100. PubMed ID: 29060310 [TBL] [Abstract][Full Text] [Related]
15. A single-joint multi-task motor imagery EEG signal recognition method based on Empirical Wavelet and Multi-Kernel Extreme Learning Machine. Guan S; Cong L; Wang F; Dong T J Neurosci Methods; 2024 Jul; 407():110136. PubMed ID: 38642806 [TBL] [Abstract][Full Text] [Related]
16. Efficient Multiple Channels EEG Signal Classification Based on Hierarchical Extreme Learning Machine. Lyu S; Cheung RCC Sensors (Basel); 2023 Nov; 23(21):. PubMed ID: 37960675 [TBL] [Abstract][Full Text] [Related]
17. Unsupervised and semi-supervised domain adaptation networks considering both global knowledge and prototype-based local class information for Motor Imagery Classification. Zhang D; Li H; Xie J Neural Netw; 2024 Nov; 179():106497. PubMed ID: 38986186 [TBL] [Abstract][Full Text] [Related]
18. A Semi-Supervised Progressive Learning Algorithm for Brain-Computer Interface. Wei Y; Li J; Ji H; Jin L; Liu L; Bai Z; Ye C IEEE Trans Neural Syst Rehabil Eng; 2022; 30():2067-2076. PubMed ID: 35853068 [TBL] [Abstract][Full Text] [Related]
19. A novel method of motor imagery classification using eeg signal. K V; A D; J M; M S; A A; Iraj SA Artif Intell Med; 2020 Mar; 103():101787. PubMed ID: 32143794 [TBL] [Abstract][Full Text] [Related]
20. Hierarchical multi-class SVM with ELM kernel for epileptic EEG signal classification. Murugavel AS; Ramakrishnan S Med Biol Eng Comput; 2016 Jan; 54(1):149-61. PubMed ID: 26296799 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]