BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

570 related articles for article (PubMed ID: 30054866)

  • 1. LncRNAs and miRs as epigenetic signatures in diabetic cardiac fibrosis: new advances and perspectives.
    Tao H; Song ZY; Ding XS; Yang JJ; Shi KH; Li J
    Endocrine; 2018 Nov; 62(2):281-291. PubMed ID: 30054866
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Noncoding RNA as regulators of cardiac fibrosis: current insight and the road ahead.
    Tao H; Yang JJ; Hu W; Shi KH; Deng ZY; Li J
    Pflugers Arch; 2016 Jun; 468(6):1103-11. PubMed ID: 26786602
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Long noncoding RNA Crnde attenuates cardiac fibrosis via Smad3-Crnde negative feedback in diabetic cardiomyopathy.
    Zheng D; Zhang Y; Hu Y; Guan J; Xu L; Xiao W; Zhong Q; Ren C; Lu J; Liang J; Hou J
    FEBS J; 2019 May; 286(9):1645-1655. PubMed ID: 30748104
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Current status and strategies of long noncoding RNA research for diabetic cardiomyopathy.
    Pant T; Dhanasekaran A; Fang J; Bai X; Bosnjak ZJ; Liang M; Ge ZD
    BMC Cardiovasc Disord; 2018 Oct; 18(1):197. PubMed ID: 30342478
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of Non-coding RNA in Diabetic Cardiomyopathy.
    Xia L; Song M
    Adv Exp Med Biol; 2020; 1229():181-195. PubMed ID: 32285412
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Non-coding RNA involvement in the pathogenesis of diabetic cardiomyopathy.
    Zhang W; Xu W; Feng Y; Zhou X
    J Cell Mol Med; 2019 Sep; 23(9):5859-5867. PubMed ID: 31240820
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Non-coding RNAs as direct and indirect modulators of epigenetic mechanism regulation of cardiac fibrosis.
    Tao H; Yang JJ; Shi KH
    Expert Opin Ther Targets; 2015 May; 19(5):707-16. PubMed ID: 25652534
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Non-coding RNA-mediated epigenetic regulation of liver fibrosis.
    Yang JJ; Tao H; Deng ZY; Lu C; Li J
    Metabolism; 2015 Nov; 64(11):1386-94. PubMed ID: 26362725
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MicroRNAs and long non-coding RNAs in the pathophysiological processes of diabetic cardiomyopathy: emerging biomarkers and potential therapeutics.
    Jakubik D; Fitas A; Eyileten C; Jarosz-Popek J; Nowak A; Czajka P; Wicik Z; Sourij H; Siller-Matula JM; De Rosa S; Postula M
    Cardiovasc Diabetol; 2021 Feb; 20(1):55. PubMed ID: 33639953
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biological Functions and Clinical Prospects of Extracellular Non-Coding RNAs in Diabetic Cardiomyopathy: an Updated Review.
    Yin Z; Chen C
    J Cardiovasc Transl Res; 2022 Jun; 15(3):469-476. PubMed ID: 35175553
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Noncoding RNAs as therapeutic targets in autophagy-related diabetic cardiomyopathy.
    Break MKB; Syed RU; Hussein W; Alqarni S; Magam SM; Nawaz M; Shaikh S; Otaibi AA; Masood N; Younes KM
    Pathol Res Pract; 2024 Apr; 256():155225. PubMed ID: 38442448
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Construction and analysis of a lncRNA‑miRNA‑mRNA network based on competitive endogenous RNA reveals functional lncRNAs in diabetic cardiomyopathy.
    Chen K; Ma Y; Wu S; Zhuang Y; Liu X; Lv L; Zhang G
    Mol Med Rep; 2019 Aug; 20(2):1393-1403. PubMed ID: 31173240
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The expression profiling and ontology analysis of noncoding RNAs in peritoneal fibrosis induced by peritoneal dialysis fluid.
    Liu Y; Guo R; Hao G; Xiao J; Bao Y; Zhou J; Chen Q; Wei X
    Gene; 2015 Jun; 564(2):210-9. PubMed ID: 25827714
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Non-Coding Ribonucleic Acids as Diagnostic and Therapeutic Targets in Cardiac Fibrosis.
    Olson SR; Tang WHW; Liu CF
    Curr Heart Fail Rep; 2024 Jun; 21(3):262-275. PubMed ID: 38485860
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Epigenetic signatures in cardiac fibrosis, special emphasis on DNA methylation and histone modification.
    Tao H; Song ZY; Ding XS; Yang JJ; Shi KH; Li J
    Heart Fail Rev; 2018 Sep; 23(5):789-799. PubMed ID: 29607455
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Non-coding RNA-mediated endothelial-to-mesenchymal transition in human diabetic cardiomyopathy, potential regulation by DNA methylation.
    Wang E; Chen S; Wang H; Chen T; Chakrabarti S
    Cardiovasc Diabetol; 2023 Nov; 22(1):303. PubMed ID: 37924123
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pathophysiological Fundamentals of Diabetic Cardiomyopathy.
    Hu X; Bai T; Xu Z; Liu Q; Zheng Y; Cai L
    Compr Physiol; 2017 Mar; 7(2):693-711. PubMed ID: 28333387
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diabetic cardiomyopathy: The role of microRNAs and long non-coding RNAs.
    Macvanin MT; Gluvic Z; Radovanovic J; Essack M; Gao X; Isenovic ER
    Front Endocrinol (Lausanne); 2023; 14():1124613. PubMed ID: 36950696
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transforming growth factor beta (TGF-β) mediates cardiac fibrosis and induces diabetic cardiomyopathy.
    Yue Y; Meng K; Pu Y; Zhang X
    Diabetes Res Clin Pract; 2017 Nov; 133():124-130. PubMed ID: 28934669
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of ncRNAs-mediated pyroptosis in diabetes and its vascular complications.
    Feng X; Yang X; Zhong Y; Cheng X
    Cell Biochem Funct; 2024 Mar; 42(2):e3968. PubMed ID: 38439590
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.