These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

294 related articles for article (PubMed ID: 30054915)

  • 41. Molecular approaches to improve rice abiotic stress tolerance.
    Mizoi J; Yamaguchi-Shinozaki K
    Methods Mol Biol; 2013; 956():269-83. PubMed ID: 23135859
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Nanoparticle-mediated defense priming: A review of strategies for enhancing plant resilience against biotic and abiotic stresses.
    Yadav N; Bora S; Devi B; Upadhyay C; Singh P
    Plant Physiol Biochem; 2024 Aug; 213():108796. PubMed ID: 38901229
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Systems biology approach in plant abiotic stresses.
    Mohanta TK; Bashir T; Hashem A; Abd Allah EF
    Plant Physiol Biochem; 2017 Dec; 121():58-73. PubMed ID: 29096174
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The physiological and molecular mechanism of brassinosteroid in response to stress: a review.
    Anwar A; Liu Y; Dong R; Bai L; Yu X; Li Y
    Biol Res; 2018 Nov; 51(1):46. PubMed ID: 30419959
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Molecular and physiological responses to abiotic stress in forest trees and their relevance to tree improvement.
    Harfouche A; Meilan R; Altman A
    Tree Physiol; 2014 Nov; 34(11):1181-98. PubMed ID: 24695726
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Functional characterization of germin and germin-like protein genes in various plant species using transgenic approaches.
    Ilyas M; Rasheed A; Mahmood T
    Biotechnol Lett; 2016 Sep; 38(9):1405-21. PubMed ID: 27230937
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Coordinated Actions of Glyoxalase and Antioxidant Defense Systems in Conferring Abiotic Stress Tolerance in Plants.
    Hasanuzzaman M; Nahar K; Hossain MS; Mahmud JA; Rahman A; Inafuku M; Oku H; Fujita M
    Int J Mol Sci; 2017 Jan; 18(1):. PubMed ID: 28117669
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Advances in crop proteomics: PTMs of proteins under abiotic stress.
    Wu X; Gong F; Cao D; Hu X; Wang W
    Proteomics; 2016 Mar; 16(5):847-65. PubMed ID: 26616472
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Recent developments in use of 1-aminocyclopropane-1-carboxylate (ACC) deaminase for conferring tolerance to biotic and abiotic stress.
    Gontia-Mishra I; Sasidharan S; Tiwari S
    Biotechnol Lett; 2014 May; 36(5):889-98. PubMed ID: 24563292
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Methylglyoxal detoxification by a DJ-1 family protein provides dual abiotic and biotic stress tolerance in transgenic plants.
    Melvin P; Bankapalli K; D'Silva P; Shivaprasad PV
    Plant Mol Biol; 2017 Jul; 94(4-5):381-397. PubMed ID: 28444544
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Abiotic stress tolerance mediated by protein ubiquitination.
    Lyzenga WJ; Stone SL
    J Exp Bot; 2012 Jan; 63(2):599-616. PubMed ID: 22016431
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Targeting metabolic pathways for genetic engineering abiotic stress-tolerance in crops.
    Reguera M; Peleg Z; Blumwald E
    Biochim Biophys Acta; 2012 Feb; 1819(2):186-94. PubMed ID: 21867784
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Enhanced tolerance to environmental stress in transgenic plants expressing the transcriptional coactivator multiprotein bridging factor 1c.
    Suzuki N; Rizhsky L; Liang H; Shuman J; Shulaev V; Mittler R
    Plant Physiol; 2005 Nov; 139(3):1313-22. PubMed ID: 16244138
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Pathogenesis-related proteins and peptides as promising tools for engineering plants with multiple stress tolerance.
    Ali S; Ganai BA; Kamili AN; Bhat AA; Mir ZA; Bhat JA; Tyagi A; Islam ST; Mushtaq M; Yadav P; Rawat S; Grover A
    Microbiol Res; 2018; 212-213():29-37. PubMed ID: 29853166
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Physiological and biotechnological implications of transcript-level variation under abiotic stress.
    Sanchez DH
    Plant Biol (Stuttg); 2013 Nov; 15(6):925-30. PubMed ID: 24033916
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Advances in 5-Aminolevulinic Acid Priming to Enhance Plant Tolerance to Abiotic Stress.
    Tan S; Cao J; Xia X; Li Z
    Int J Mol Sci; 2022 Jan; 23(2):. PubMed ID: 35054887
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Relevance of proteomic investigations in plant abiotic stress physiology.
    Hakeem KR; Chandna R; Ahmad P; Iqbal M; Ozturk M
    OMICS; 2012 Nov; 16(11):621-35. PubMed ID: 23046473
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Plant protein phosphatases 2C: from genomic diversity to functional multiplicity and importance in stress management.
    Singh A; Pandey A; Srivastava AK; Tran LS; Pandey GK
    Crit Rev Biotechnol; 2016 Dec; 36(6):1023-1035. PubMed ID: 26380928
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Soybean NAC transcription factors promote abiotic stress tolerance and lateral root formation in transgenic plants.
    Hao YJ; Wei W; Song QX; Chen HW; Zhang YQ; Wang F; Zou HF; Lei G; Tian AG; Zhang WK; Ma B; Zhang JS; Chen SY
    Plant J; 2011 Oct; 68(2):302-13. PubMed ID: 21707801
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Osmoprotection in plants under abiotic stresses: new insights into a classical phenomenon.
    Zulfiqar F; Akram NA; Ashraf M
    Planta; 2019 Nov; 251(1):3. PubMed ID: 31776765
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.