These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 30055070)

  • 1. Carbon acquisition characteristics of six microalgal species isolated from a subtropical reservoir: potential implications for species succession.
    Lines T; Beardall J
    J Phycol; 2018 Oct; 54(5):599-607. PubMed ID: 30055070
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Elevated co
    Lines T; Orr P; Beardall J
    J Phycol; 2021 Feb; 57(1):324-334. PubMed ID: 33191502
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Subtropical freshwater phytoplankton show a greater response to increased temperature than to increased pCO
    Willis A; Chuang AW; Orr PT; Beardall J; Burford MA
    Harmful Algae; 2019 Dec; 90():101705. PubMed ID: 31806159
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diversity of CO2-concentrating mechanisms and responses to CO2 concentration in marine and freshwater diatoms.
    Clement R; Jensen E; Prioretti L; Maberly SC; Gontero B
    J Exp Bot; 2017 Jun; 68(14):3925-3935. PubMed ID: 28369472
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbon concentrating mechanisms in eukaryotic marine phytoplankton.
    Reinfelder JR
    Ann Rev Mar Sci; 2011; 3():291-315. PubMed ID: 21329207
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The impacts of a high CO₂ environment on a bicarbonate user: the cyanobacterium Cylindrospermopsis raciborskii.
    Holland DP; Pantorno A; Orr PT; Stojkovic S; Beardall J
    Water Res; 2012 Apr; 46(5):1430-7. PubMed ID: 22119367
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanisms of carbon dioxide acquisition and CO
    Matsuda Y; Hopkinson BM; Nakajima K; Dupont CL; Tsuji Y
    Philos Trans R Soc Lond B Biol Sci; 2017 Sep; 372(1728):. PubMed ID: 28717013
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changes in pH and dissolved inorganic carbon in water affect the growth, saxitoxins production and toxicity of the cyanobacterium Raphidiopsis raciborskii ITEP-A1.
    Vilar MCP; Molica RJR
    Harmful Algae; 2020 Jul; 97():101870. PubMed ID: 32732056
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The potential for co-evolution of CO2-concentrating mechanisms and Rubisco in diatoms.
    Young JN; Hopkinson BM
    J Exp Bot; 2017 Jun; 68(14):3751-3762. PubMed ID: 28645158
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Seasonal dynamics and toxicity of Cylindrospermopsis raciborskii in Lake Guiers (Senegal, West Africa).
    Berger C; Ba N; Gugger M; Bouvy M; Rusconi F; Couté A; Troussellier M; Bernard C
    FEMS Microbiol Ecol; 2006 Sep; 57(3):355-66. PubMed ID: 16907750
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of external carbonic anhydrase in photosynthesis during growth of the marine diatom Chaetoceros muelleri.
    Smith-Harding TJ; Beardall J; Mitchell JG
    J Phycol; 2017 Dec; 53(6):1159-1170. PubMed ID: 28771812
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ecophysiology matters: linking inorganic carbon acquisition to ecological preference in four species of microalgae (Chlorophyceae).
    Lachmann SC; Maberly SC; Spijkerman E
    J Phycol; 2016 Dec; 52(6):1051-1063. PubMed ID: 27624741
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cell size influences inorganic carbon acquisition in artificially selected phytoplankton.
    Malerba ME; Marshall DJ; Palacios MM; Raven JA; Beardall J
    New Phytol; 2021 Mar; 229(5):2647-2659. PubMed ID: 33156533
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Response of microalgae to elevated CO2 and temperature: impact of climate change on freshwater ecosystems.
    Li W; Xu X; Fujibayashi M; Niu Q; Tanaka N; Nishimura O
    Environ Sci Pollut Res Int; 2016 Oct; 23(19):19847-60. PubMed ID: 27421856
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ecological imperatives for aquatic CO2-concentrating mechanisms.
    Maberly SC; Gontero B
    J Exp Bot; 2017 Jun; 68(14):3797-3814. PubMed ID: 28645178
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photosynthetic kinetics determine the outcome of competition for dissolved inorganic carbon by freshwater microalgae: implications for acidified lakes.
    Williams TG; Turpin DH
    Oecologia; 1987 Sep; 73(2):307-311. PubMed ID: 28312303
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phytoplankton composition of the water and gastrointestinal tract of the mussel Diplodon enno (Ortmann, 1921) from São Francisco river (Bahia, Brazil).
    Alves T; Lima P; Lima GM; Cunha MC; Ferreira S; Domingues B; Machado J
    Braz J Biol; 2016 Jun; 76(2):352-9. PubMed ID: 27007506
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolutionarily distinct strategies for the acquisition of inorganic carbon from seawater in marine diatoms.
    Tsuji Y; Mahardika A; Matsuda Y
    J Exp Bot; 2017 Jun; 68(14):3949-3958. PubMed ID: 28398591
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low temperature reduces the energetic requirement for the CO2 concentrating mechanism in diatoms.
    Kranz SA; Young JN; Hopkinson BM; Goldman JA; Tortell PD; Morel FM
    New Phytol; 2015 Jan; 205(1):192-201. PubMed ID: 25308897
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Presence of the CO2-concentrating mechanism in some species of the pyrenoid-less free-living algal genus Chloromonas (Volvocales, Chlorophyta).
    Morita E; Abe T; Tsuzuki M; Fujiwara S; Sato N; Hirata A; Sonoike K; Nozaki H
    Planta; 1998 Mar; 204(3):269-76. PubMed ID: 9530871
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.