These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 3005511)
21. Adenylyl cyclase activation underlies intracellular cyclic AMP accumulation, cyclic AMP transport, and extracellular adenosine accumulation evoked by beta-adrenergic receptor stimulation in mixed cultures of neurons and astrocytes derived from rat cerebral cortex. Rosenberg PA; Li Y Brain Res; 1995 Sep; 692(1-2):227-32. PubMed ID: 8548307 [TBL] [Abstract][Full Text] [Related]
22. Spontaneous and beta-adrenergic receptor-mediated taurine release from astroglial cells do not require extracellular calcium. Martin DL; Madelian V; Shain W J Neurosci Res; 1989 Jun; 23(2):191-7. PubMed ID: 2547083 [TBL] [Abstract][Full Text] [Related]
23. Participation of cyclic adenosine monophosphate and beta-adrenergic receptors in the facilitatory effect of noradrenaline on the response of cultured cerebellar neurons to glutamate. Mori-Okamoto J; Tasuno J Brain Res; 1989 Jun; 490(1):64-72. PubMed ID: 2569354 [TBL] [Abstract][Full Text] [Related]
24. Exogenous and endogenous catecholamines inhibit the production of macrophage inflammatory protein (MIP) 1 alpha via a beta adrenoceptor mediated mechanism. Haskó G; Shanley TP; Egnaczyk G; Németh ZH; Salzman AL; Vizi ES; Szabó C Br J Pharmacol; 1998 Nov; 125(6):1297-303. PubMed ID: 9863660 [TBL] [Abstract][Full Text] [Related]
25. Neonatal rat pinealocytes: typical and atypical characteristics of [125I]iodohydroxybenzylpindolol binding and adenosine 3',5'-monophosphate accumulation. Auerbach DA; Klein DC; Woodard C; Aurbach GD Endocrinology; 1981 Feb; 108(2):559-67. PubMed ID: 6256156 [TBL] [Abstract][Full Text] [Related]
26. Expression of type I interleukin-1 receptor mRNA and its regulation in cultured astrocytes. Tomozawa Y; Inoue T; Satoh M Neurosci Lett; 1995 Jul; 195(1):57-60. PubMed ID: 7478255 [TBL] [Abstract][Full Text] [Related]
27. Pharmacological identification of the alpha-adrenergic receptor type which inhibits the beta-adrenergic activated adenylate cyclase system in cultured astrocytes. Northam WJ; Bedoy CA; Mobley PL Glia; 1989; 2(2):129-33. PubMed ID: 2542160 [TBL] [Abstract][Full Text] [Related]
28. 7beta-hydroxysterol is cytotoxic to neonatal rat astrocytes in primary culture when cAMP levels are increased. Bochelen D; Langley K; Adamczyk M; Kupferberg A; Hor F; Vincendon G; Mersel M J Neurosci Res; 2000 Oct; 62(1):99-111. PubMed ID: 11002292 [TBL] [Abstract][Full Text] [Related]
29. N6,O2'-Dibutyryl cyclic AMP and cholera toxin-induced beta-adrenergic receptor loss in cultured cells. Moylan RD; Barovsky K; Brooker G J Biol Chem; 1982 May; 257(9):4947-50. PubMed ID: 6175645 [No Abstract] [Full Text] [Related]
30. Mechanism of catecholamine-mediated destabilization of messenger RNA encoding Thy-1 protein in T-lineage cells. Wajeman-Chao SA; Lancaster SA; Graf LH; Chambers DA J Immunol; 1998 Nov; 161(9):4825-33. PubMed ID: 9794415 [TBL] [Abstract][Full Text] [Related]
31. The influences of glucagon, epinephrine and alpha- and beta-adrenergic agents on glycogenolysis in isolated rabbit hepatocytes and perfused livers. Rufo GA; Yorek MA; Ray PD Biochim Biophys Acta; 1981 May; 674(3):297-305. PubMed ID: 6263353 [TBL] [Abstract][Full Text] [Related]
32. Beta-adrenergic receptor modulation of the LPS-mediated depression in CYP1A activity in astrocytes. Abdulla D; Renton KW Biochem Pharmacol; 2005 Mar; 69(5):741-50. PubMed ID: 15710352 [TBL] [Abstract][Full Text] [Related]
33. The mechanism of the control of renin release by beta-adrenergic receptors. Suzuki S; Hashiba K Jpn Heart J; 1986 Nov; 27(6):871-80. PubMed ID: 3033346 [TBL] [Abstract][Full Text] [Related]
35. Alpha- and beta-adrenoceptor regulation of cyclic AMP accumulation in cultured rat astrocytes. A comparison of primary protoplasmic and mixed fibrous/protoplasmic astroglial cultures. Ruck A; Kendall DA; Hill SJ Biochem Pharmacol; 1991 Jun; 42(1):59-69. PubMed ID: 1648923 [TBL] [Abstract][Full Text] [Related]
36. Alanine and glutamine synthesis and release from skeletal muscle. IV. beta-Adrenergic inhibition of amino acid release. Garber AJ; Karl IE; Kipnis DM J Biol Chem; 1976 Feb; 251(3):851-7. PubMed ID: 175062 [TBL] [Abstract][Full Text] [Related]
37. Properties of beta-adrenergic receptors in untreated and butyrate-treated Hela cells. Tallman JF; Smith CC; Henneberry RC Biochim Biophys Acta; 1978 Jul; 541(3):288-300. PubMed ID: 208639 [TBL] [Abstract][Full Text] [Related]
38. Stimulatory and inhibitory effects of catecholamines on DNA synthesis in primary rat hepatocyte cultures: role of alpha 1- and beta-adrenergic mechanisms. Refsnes M; Thoresen GH; Sandnes D; Dajani OF; Dajani L; Christoffersen T J Cell Physiol; 1992 Apr; 151(1):164-71. PubMed ID: 1313818 [TBL] [Abstract][Full Text] [Related]
39. The mechanism of the inhibitory action of adrenaline on transmitter release in bullfrog sympathetic ganglia: independence of cyclic AMP and calcium ions. Kato E; Koketsu K; Kuba K; Kumamoto E Br J Pharmacol; 1985 Feb; 84(2):435-43. PubMed ID: 2858238 [TBL] [Abstract][Full Text] [Related]
40. Beta-adrenergic inhibition of AGEPC-stimulated Na+/Ca2+ exchange and AGEPC-induced platelet activation. Kester M; Fisher RA; Olson MS Biochim Biophys Acta; 1989 Nov; 1014(2):195-202. PubMed ID: 2554977 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]