These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
214 related articles for article (PubMed ID: 30055449)
1. Preparation and characterization of melamine-formaldehyde/Ag composite microspheres with surface-enhanced Raman scattering and antibacterial activities. Wen P; Wang Y; Wang N; Zhang S; Peng B; Deng Z J Colloid Interface Sci; 2018 Dec; 531():544-554. PubMed ID: 30055449 [TBL] [Abstract][Full Text] [Related]
2. Bioinspired synthesis of polydopamine/Ag nanocomposite particles with antibacterial activities. Wu C; Zhang G; Xia T; Li Z; Zhao K; Deng Z; Guo D; Peng B Mater Sci Eng C Mater Biol Appl; 2015 Oct; 55():155-65. PubMed ID: 26117750 [TBL] [Abstract][Full Text] [Related]
3. Preparation of melamine sponge decorated with silver nanoparticles-modified graphene for water disinfection. Deng CH; Gong JL; Zhang P; Zeng GM; Song B; Liu HY J Colloid Interface Sci; 2017 Feb; 488():26-38. PubMed ID: 27821337 [TBL] [Abstract][Full Text] [Related]
4. One pot preparation of silver nanoparticles decorated TiO2 mesoporous microspheres with enhanced antibacterial activity. Chen Y; Deng Y; Pu Y; Tang B; Su Y; Tang J Mater Sci Eng C Mater Biol Appl; 2016 Aug; 65():27-32. PubMed ID: 27157724 [TBL] [Abstract][Full Text] [Related]
5. Fabrication of silver nanoparticles embedded into polyvinyl alcohol (Ag/PVA) composite nanofibrous films through electrospinning for antibacterial and surface-enhanced Raman scattering (SERS) activities. Zhang Z; Wu Y; Wang Z; Zou X; Zhao Y; Sun L Mater Sci Eng C Mater Biol Appl; 2016 Dec; 69():462-9. PubMed ID: 27612736 [TBL] [Abstract][Full Text] [Related]
6. Micron-sized surface enhanced Raman scattering reporter/fluorescence probe encoded colloidal microspheres for sensitive DNA detection. You L; Li R; Dong X; Wang F; Guo J; Wang C J Colloid Interface Sci; 2017 Feb; 488():109-117. PubMed ID: 27821331 [TBL] [Abstract][Full Text] [Related]
7. One-step synthesis of size-tunable Ag nanoparticles incorporated in electrospun PVA/cyclodextrin nanofibers. Celebioglu A; Aytac Z; Umu OC; Dana A; Tekinay T; Uyar T Carbohydr Polym; 2014 Jan; 99():808-16. PubMed ID: 24274573 [TBL] [Abstract][Full Text] [Related]
8. Surface enhanced Raman scattering, antibacterial and antifungal active triangular gold nanoparticles. Smitha SL; Gopchandran KG Spectrochim Acta A Mol Biomol Spectrosc; 2013 Feb; 102():114-9. PubMed ID: 23220525 [TBL] [Abstract][Full Text] [Related]
9. Synthesis of phenolic precursor-based porous carbon beads in situ dispersed with copper-silver bimetal nanoparticles for antibacterial applications. Khare P; Sharma A; Verma N J Colloid Interface Sci; 2014 Mar; 418():216-24. PubMed ID: 24461838 [TBL] [Abstract][Full Text] [Related]
10. Facile One-Step Deposition of Ag Nanoparticles on SiO Wan M; Zhao H; Peng L; Zhao Y; Sun L ACS Appl Bio Mater; 2021 Aug; 4(8):6549-6557. PubMed ID: 35006892 [TBL] [Abstract][Full Text] [Related]
11. In situ green synthesis of Ag nanoparticles on herbal tea extract (Stachys lavandulifolia)-modified magnetic iron oxide nanoparticles as antibacterial agent and their 4-nitrophenol catalytic reduction activity. Shahriary M; Veisi H; Hekmati M; Hemmati S Mater Sci Eng C Mater Biol Appl; 2018 Sep; 90():57-66. PubMed ID: 29853127 [TBL] [Abstract][Full Text] [Related]
12. Urchin-like LaVO₄/Au composite microspheres for surface-enhanced Raman scattering detection. Chen L; Wu M; Xiao C; Yu Y; Liu X; Qiu G J Colloid Interface Sci; 2015 Apr; 443():80-7. PubMed ID: 25540824 [TBL] [Abstract][Full Text] [Related]
13. In-situ reduction of monodisperse nanosilver on hierarchical wrinkled mesoporous silica with radial pore channels and its antibacterial performance. Wan X; Zhuang L; She B; Deng Y; Chen D; Tang J Mater Sci Eng C Mater Biol Appl; 2016 Aug; 65():323-30. PubMed ID: 27157758 [TBL] [Abstract][Full Text] [Related]
14. Facile green synthesis of silver nanoparticles using seed aqueous extract of Pistacia atlantica and its antibacterial activity. Sadeghi B; Rostami A; Momeni SS Spectrochim Acta A Mol Biomol Spectrosc; 2015 Jan; 134():326-32. PubMed ID: 25022505 [TBL] [Abstract][Full Text] [Related]
15. Self-Assembled Peptide Nanofibers Encapsulated with Superfine Silver Nanoparticles via Ag⁺ Coordination. Hu Y; Xu W; Li G; Xu L; Song A; Hao J Langmuir; 2015 Aug; 31(31):8599-605. PubMed ID: 26177269 [TBL] [Abstract][Full Text] [Related]
16. Ag nanoparticles decorated electrospinning carbon nanotubes/polyamide nanofibers. Huang D; Lin Q; Yin M; Wei Y; Du J; Hu Y; Zhao L; Lian X; Chen W J Biomater Sci Polym Ed; 2019 Dec; 30(18):1744-1755. PubMed ID: 31454302 [TBL] [Abstract][Full Text] [Related]
17. Antimicrobial potency of differently coated 10 and 50 nm silver nanoparticles against clinically relevant bacteria Escherichia coli and Staphylococcus aureus. Kubo AL; Capjak I; Vrček IV; Bondarenko OM; Kurvet I; Vija H; Ivask A; Kasemets K; Kahru A Colloids Surf B Biointerfaces; 2018 Oct; 170():401-410. PubMed ID: 29945052 [TBL] [Abstract][Full Text] [Related]
18. Antibacterial efficacy of silver nanoparticles of different sizes, surface conditions and synthesis methods. Samberg ME; Orndorff PE; Monteiro-Riviere NA Nanotoxicology; 2011 Jun; 5(2):244-53. PubMed ID: 21034371 [TBL] [Abstract][Full Text] [Related]
19. Impregnation of silver nanoparticles into polysaccharide substrates and their properties. Hassabo AG; Nada AA; Ibrahim HM; Abou-Zeid NY Carbohydr Polym; 2015 May; 122():343-50. PubMed ID: 25817678 [TBL] [Abstract][Full Text] [Related]