These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 30055484)

  • 21. Inhibition of sediment internal phosphorus release in agricultural drainage ditches by ceria nanoparticle capping.
    Li Q; Liu L; He H; Yan W
    Environ Sci Pollut Res Int; 2022 Nov; 29(54):81789-81803. PubMed ID: 35739441
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Successful control of internal phosphorus loading after sediment dredging for 6years: A field assessment using high-resolution sampling techniques.
    Chen M; Cui J; Lin J; Ding S; Gong M; Ren M; Tsang DCW
    Sci Total Environ; 2018 Mar; 616-617():927-936. PubMed ID: 29111246
    [TBL] [Abstract][Full Text] [Related]  

  • 23. DGT induced fluxes in sediments model for the simulation of phosphorus process and the assessment of phosphorus release risk.
    Wu Z; Wang S; Zhang L; Jiao L
    Environ Sci Pollut Res Int; 2016 Jul; 23(14):14608-20. PubMed ID: 27068919
    [TBL] [Abstract][Full Text] [Related]  

  • 24. In situ, high-resolution imaging of labile phosphorus in sediments of a large eutrophic lake.
    Ding S; Han C; Wang Y; Yao L; Wang Y; Xu D; Sun Q; Williams PN; Zhang C
    Water Res; 2015 May; 74():100-9. PubMed ID: 25720671
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fine-scale bioturbation effects of tubificid worm (Limnodrilus hoffmeisteri) on the lability of phosphorus in sediments.
    Chen M; Ding S; Liu L; Wang Y; Xing X; Wang D; Gong M; Zhang C
    Environ Pollut; 2016 Dec; 219():604-611. PubMed ID: 27352765
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [In Situ High-Resolution Analysis of Labile Phosphorus in Sediments of Lake Chaohu].
    Li C; Wang D; Yang JY; Wang Y; Ding SM
    Huan Jing Ke Xue; 2015 Jun; 36(6):2077-84. PubMed ID: 26387310
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cyclical patterns and (im)mobilization mechanisms of phosphorus in sediments from a small creek estuary: Evidence from in situ monthly sampling and indoor experiments.
    Pan F; Guo Z; Cai Y; Fu Y; Wu J; Wang B; Liu H; Gao A
    Water Res; 2020 Mar; 171():115479. PubMed ID: 31935642
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Interception of phosphorus release from sediments using Mg/Fe-based layered double hydroxide (MF-LDH) and MF-LDH coated magnetite as geo-engineering tools.
    Wu J; Lin J; Zhan Y
    Sci Total Environ; 2020 Oct; 739():139749. PubMed ID: 32535461
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Control of phosphorus release from sediment by hydrous zirconium oxide combined with calcite, bentonite and zeolite.
    Lu Y; Lin J; Wu X; Zhan Y
    Chemosphere; 2023 Aug; 332():138892. PubMed ID: 37169085
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Effect of Zirconium Modified Kaolin-Based Cap on Migration and Transformation of Phosphorus Between Sediment and Overlying Water].
    Zhang Z; Lin JW; Zhan YH; Wang H
    Huan Jing Ke Xue; 2016 Apr; 37(4):1427-36. PubMed ID: 27548965
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Use of Iron-modified Calcite as an Active Capping Material to Control Phosphorus Release from Sediments in Surface Water Bodies].
    Bai XY; Lin JW; Zhan YH; Chang MY; Xin HM; Wu JL
    Huan Jing Ke Xue; 2020 Mar; 41(3):1296-1307. PubMed ID: 32608631
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Immobilization of phosphorus in water-sediment system by iron-modified attapulgite, calcite, bentonite and dolomite under feed input condition: Efficiency, mechanism, application mode effect and response of microbial communities and iron mobilization.
    Jin S; Lin J; Zhan Y
    Water Res; 2023 Dec; 247():120777. PubMed ID: 37897994
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Combined use of calcium nitrate addition and anion exchange resin capping to control sedimentary phosphorus release and its nitrate‑nitrogen releasing risk.
    Zhan Y; Wu X; Lin J; Zhang Z; Zhao Y; Yu Y; Wang Y
    Sci Total Environ; 2019 Nov; 689():203-214. PubMed ID: 31279186
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Effect of the Combined Use of Denitrifying Bacteria, Calcium Nitrate, and Zirconium-Modified Zeolite on the Mobilization of Nitrogen and Phosphorus in Sediments and Evaluation of Its Nitrate-Nitrogen Releasing Risk].
    Xin HM; Lin JW; Zhan YH
    Huan Jing Ke Xue; 2021 Apr; 42(4):1847-1860. PubMed ID: 33742820
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evaluation of simulated dredging to control internal phosphorus release from sediments: Focused on phosphorus transfer and resupply across the sediment-water interface.
    Yu J; Ding S; Zhong J; Fan C; Chen Q; Yin H; Zhang L; Zhang Y
    Sci Total Environ; 2017 Aug; 592():662-673. PubMed ID: 28318691
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A new method to overall immobilization of phosphorus in sediments through combined application of capping and oxidizing agents.
    Sun Q; Lin J; Cao J; Li C; Shi D; Gao M; Wang Y; Zhang C; Ding S
    Sci Total Environ; 2019 Dec; 694():133770. PubMed ID: 31401510
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A millimeter-scale observation of the competitive effect of phosphate on promotion of arsenic mobilization in sediments.
    Sun Q; Ding S; Zhang L; Chen M; Zhang C
    Chemosphere; 2017 Aug; 180():285-294. PubMed ID: 28411545
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Combined use of calcium nitrate, zeolite, and anion exchange resin for controlling phosphorus and nitrogen release from sediment and for overcoming disadvantage of calcium nitrate addition technology.
    Zhan Y; Wu X; Lin J
    Environ Sci Pollut Res Int; 2020 Jul; 27(20):24863-24878. PubMed ID: 32307687
    [TBL] [Abstract][Full Text] [Related]  

  • 39. First observation of labile arsenic stratification in aluminum sulfate-amended sediments using high resolution Zr-oxide DGT.
    Lin J; Sun Q; Ding S; Wang D; Wang Y; Tsang DCW
    Sci Total Environ; 2017 Dec; 609():304-310. PubMed ID: 28753505
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Regulating Effect and Mechanism of Calcite/Chlorapatite Mixture Addition on Transformation and Transport of Phosphorus in Sediments].
    Bai XY; Lin JW; Zhan YH; Chang MY; Wu JL; Xin HM; Huang LJ
    Huan Jing Ke Xue; 2020 May; 41(5):2281-2291. PubMed ID: 32608846
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.