These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 30055913)

  • 1. Kinetic performance factor - A measurable metric of separation-time-pressure tradeoff in liquid and gas chromatography.
    Blumberg LM; Desmet G
    J Chromatogr A; 2018 Sep; 1567():26-36. PubMed ID: 30055913
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetic performance factor - a proportional metric for comparing performance of differently structured liguid chromatography columns.
    Blumberg LM
    J Chromatogr A; 2020 Jul; 1623():461101. PubMed ID: 32418722
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dimensionless plate height is unsuitable for comparing chromatographic columns.
    Dolinskaia G; Blumberg LM
    J Chromatogr A; 2023 Nov; 1710():464406. PubMed ID: 37776824
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Methodology of quantitative comparison of practically achievable kinetic performance of differently structured liquid chromatography columns.
    Blumberg LM
    J Chromatogr A; 2022 Jun; 1672():463039. PubMed ID: 35439710
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transport diameters of liquid chromatography columns.
    Blumberg LM
    J Chromatogr A; 2023 Jan; 1687():463688. PubMed ID: 36473313
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of small size fully porous particles and superficially porous particles of chiral anion-exchange type stationary phases in ultra-high performance liquid chromatography: effect of particle and pore size on chromatographic efficiency and kinetic performance.
    Schmitt K; Woiwode U; Kohout M; Zhang T; Lindner W; Lämmerhofer M
    J Chromatogr A; 2018 Sep; 1569():149-159. PubMed ID: 30041874
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of the gradient kinetic performance of silica monolithic capillary columns with columns packed with 3 μm porous and 2.7 μm fused-core silica particles.
    Vaast A; Broeckhoven K; Dolman S; Desmet G; Eeltink S
    J Chromatogr A; 2012 Mar; 1228():270-5. PubMed ID: 21855077
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Basic Structure-Independent Equations of Kinetic Performance of Columns in Liquid Chromatography.
    Blumberg LM
    Anal Chem; 2021 Mar; 93(12):5309-5316. PubMed ID: 33734674
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Practical limits to column performance in liquid chromatography - Optimal operations.
    Blumberg LM
    J Chromatogr A; 2020 Oct; 1629():461482. PubMed ID: 32827904
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chromatographic behaviour and comparison of column packed with sub-2 microm stationary phases in liquid chromatography.
    Nguyen DT; Guillarme D; Rudaz S; Veuthey JL
    J Chromatogr A; 2006 Sep; 1128(1-2):105-13. PubMed ID: 16846612
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetic evaluation of new generation of column packed with 1.3 μm core-shell particles.
    Fekete S; Guillarme D
    J Chromatogr A; 2013 Sep; 1308():104-13. PubMed ID: 23953620
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of new types of stationary phases for fast liquid chromatographic applications.
    Fekete S; Fekete J; Ganzler K
    J Pharm Biomed Anal; 2009 Dec; 50(5):703-9. PubMed ID: 19560301
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of peak capacity of microbore liquid chromatography columns using gradient kinetic plots.
    Hetzel T; Blaesing C; Jaeger M; Teutenberg T; Schmidt TC
    J Chromatogr A; 2017 Feb; 1485():62-69. PubMed ID: 28093205
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of particle size gradients on the apparent efficiency of chromatographic columns.
    Codesido S; Rudaz S; Veuthey JL; Guillarme D; Desmet G; Fekete S
    J Chromatogr A; 2019 Oct; 1603():208-215. PubMed ID: 31266645
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Performance optimization of ultra high-resolution recycling liquid chromatography.
    Gritti F; Cormier S
    J Chromatogr A; 2018 Jan; 1532():74-88. PubMed ID: 29180221
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pressure-driven reverse-phase liquid chromatography separations in ordered nonporous pillar array columns.
    De Malsche W; Eghbali H; Clicq D; Vangelooven J; Gardeniers H; Desmet G
    Anal Chem; 2007 Aug; 79(15):5915-26. PubMed ID: 17583911
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of the kinetic performance of different columns for fast liquid chromatography, emphasizing the contributions of column end structure.
    Lambert N; Miyazaki S; Ohira M; Tanaka N; Felinger A
    J Chromatogr A; 2016 Nov; 1473():99-108. PubMed ID: 27814915
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-speed gas chromatography: an overview of various concepts.
    Cramers CA; Janssen HG; van Deursen MM; Leclercq PA
    J Chromatogr A; 1999 Sep; 856(1-2):315-29. PubMed ID: 10526794
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Band broadening in fast gradient high-performance liquid chromatography: application to the second generation of 4.6 mm I.D. silica monolithic columns.
    Gritti F; Guiochon G
    J Chromatogr A; 2012 May; 1238():77-90. PubMed ID: 22503619
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Limit of the speed-resolution properties in adiabatic supercritical fluid chromatography.
    Gritti F; Guiochon G
    J Chromatogr A; 2013 Jun; 1295():114-27. PubMed ID: 23672980
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.