BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 30056026)

  • 1. Experimental investigation of the thermal and disinfection performances of a novel hydrodynamic cavitation reactor.
    Sun X; Park JJ; Kim HS; Lee SH; Seong SJ; Om AS; Yoon JY
    Ultrason Sonochem; 2018 Dec; 49():13-23. PubMed ID: 30056026
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Disinfection characteristics of an advanced rotational hydrodynamic cavitation reactor in pilot scale.
    Sun X; Wang Z; Xuan X; Ji L; Li X; Tao Y; Boczkaj G; Zhao S; Yoon JY; Chen S
    Ultrason Sonochem; 2021 May; 73():105543. PubMed ID: 33845245
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrodynamic cavitation using vortex diode: An efficient approach for elimination of pathogenic bacteria from water.
    Jain P; Bhandari VM; Balapure K; Jena J; Ranade VV; Killedar DJ
    J Environ Manage; 2019 Jul; 242():210-219. PubMed ID: 31039530
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Water disinfection by hydrodynamic cavitation in a rotor-stator device.
    Cerecedo LM; Dopazo C; Gomez-Lus R
    Ultrason Sonochem; 2018 Nov; 48():71-78. PubMed ID: 30080588
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A review on hydrodynamic cavitation disinfection: The current state of knowledge.
    Sun X; Liu J; Ji L; Wang G; Zhao S; Yoon JY; Chen S
    Sci Total Environ; 2020 Oct; 737():139606. PubMed ID: 32783818
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel hybrid cavitation process for enhancing and altering rate of disinfection by use of natural oils derived from plants.
    Mane MB; Bhandari VM; Balapure K; Ranade VV
    Ultrason Sonochem; 2020 Mar; 61():104820. PubMed ID: 31675658
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Continuous production of nanoemulsion for skincare product using a 3D-printed rotor-stator hydrodynamic cavitation reactor.
    Matman N; Min Oo Y; Amnuaikit T; Somnuk K
    Ultrason Sonochem; 2022 Feb; 83():105926. PubMed ID: 35091233
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cavitation characteristics analysis of a novel rotor-radial groove hydrodynamic cavitation reactor.
    Song Y; Hou R; Liu Z; Liu J; Zhang W; Zhang L
    Ultrason Sonochem; 2022 May; 86():106028. PubMed ID: 35569441
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heuristic optimization of a continuous flow point-of-use UV-LED disinfection reactor using computational fluid dynamics.
    Jenny RM; Jasper MN; Simmons OD; Shatalov M; Ducoste JJ
    Water Res; 2015 Oct; 83():310-8. PubMed ID: 26179637
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental and numerical studies on the cavitation in an advanced rotational hydrodynamic cavitation reactor for water treatment.
    Sun X; Xuan X; Song Y; Jia X; Ji L; Zhao S; Yong Yoon J; Chen S; Liu J; Wang G
    Ultrason Sonochem; 2021 Jan; 70():105311. PubMed ID: 32871384
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Water disinfection by orifice-induced hydrodynamic cavitation.
    Burzio E; Bersani F; Caridi GCA; Vesipa R; Ridolfi L; Manes C
    Ultrason Sonochem; 2020 Jan; 60():104740. PubMed ID: 31539726
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Disinfection effect of a continuous-flow ultrasound/ultraviolet baffled reactor at a pilot scale.
    Zhou X; Yan Y; Li Z; Yin J
    Ultrason Sonochem; 2017 Jul; 37():114-119. PubMed ID: 28427613
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel continuous hydrodynamic cavitation technology for the inactivation of pathogens in milk.
    Sun X; Xuan X; Ji L; Chen S; Liu J; Zhao S; Park S; Yoon JY; Om AS
    Ultrason Sonochem; 2021 Mar; 71():105382. PubMed ID: 33276234
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetics of inactivation and photoreactivation of Escherichia coli using ultrasound-enhanced UV-C light-emitting diodes disinfection.
    Zhou X; Li Z; Lan J; Yan Y; Zhu N
    Ultrason Sonochem; 2017 Mar; 35(Pt A):471-477. PubMed ID: 27816441
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling the shear rate and pressure drop in a hydrodynamic cavitation reactor with experimental validation based on KI decomposition studies.
    Badve MP; Alpar T; Pandit AB; Gogate PR; Csoka L
    Ultrason Sonochem; 2015 Jan; 22():272-7. PubMed ID: 24924259
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Removal of bacteria Legionella pneumophila, Escherichia coli, and Bacillus subtilis by (super)cavitation.
    Šarc A; Kosel J; Stopar D; Oder M; Dular M
    Ultrason Sonochem; 2018 Apr; 42():228-236. PubMed ID: 29429664
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Non-thermal plasma-based inactivation of bacteria in water using a microfluidic reactor.
    Patinglag L; Melling LM; Whitehead KA; Sawtell D; Iles A; Shaw KJ
    Water Res; 2021 Aug; 201():117321. PubMed ID: 34134037
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigation into cavitational intensity and COD reduction performance of the pinned disc reactor with various rotor-stator arrangements.
    Gostiša J; Zupanc M; Dular M; Širok B; Levstek M; Bizjan B
    Ultrason Sonochem; 2021 Sep; 77():105669. PubMed ID: 34303127
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A parametrical study of disinfection with hydrodynamic cavitation.
    Arrojo S; Benito Y; Tarifa AM
    Ultrason Sonochem; 2008 Jul; 15(5):903-8. PubMed ID: 18077202
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inactivation and injury assessment of Escherichia coli during solar and photocatalytic disinfection in LDPE bags.
    Dunlop PS; Ciavola M; Rizzo L; Byrne JA
    Chemosphere; 2011 Nov; 85(7):1160-6. PubMed ID: 21982840
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.