BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 30056026)

  • 21. Hydrodynamic cavitation assisted degradation of persistent endocrine-disrupting organochlorine pesticide Dicofol: Optimization of operating parameters and investigations on the mechanism of intensification.
    Panda D; Manickam S
    Ultrason Sonochem; 2019 Mar; 51():526-532. PubMed ID: 30224289
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparison of disinfection effect of pressurized gases of CO2, N2O, and N2 on Escherichia coli.
    Vo HT; Imai T; Teeka J; Sekine M; Kanno A; Le TV; Higuchi T; Phummala K; Yamamoto K
    Water Res; 2013 Sep; 47(13):4286-93. PubMed ID: 23764579
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparative effect of simulated solar light, UV, UV/H2O2 and photo-Fenton treatment (UV-Vis/H2O2/Fe2+,3+) in the Escherichia coli inactivation in artificial seawater.
    Rubio D; Nebot E; Casanueva JF; Pulgarin C
    Water Res; 2013 Oct; 47(16):6367-79. PubMed ID: 24035676
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Application of cavitational reactors for water disinfection: current status and path forward.
    Gogate PR
    J Environ Manage; 2007 Dec; 85(4):801-15. PubMed ID: 17714855
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hydrodynamic cavitation as an efficient water treatment method for various sewage:- A review.
    Song Y; Hou R; Zhang W; Liu J
    Water Sci Technol; 2022 Jul; 86(2):302-320. PubMed ID: 35906909
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of the arrangement of cavitation generation unit on the performance of an advanced rotational hydrodynamic cavitation reactor.
    Sun X; Xia G; You W; Jia X; Manickam S; Tao Y; Zhao S; Yoon JY; Xuan X
    Ultrason Sonochem; 2023 Oct; 99():106544. PubMed ID: 37544171
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Multi-objective optimization of the cavitation generation unit structure of an advanced rotational hydrodynamic cavitation reactor.
    Sun X; Yang Z; Wei X; Tao Y; Boczkaj G; Yoon JY; Xuan X; Chen S
    Ultrason Sonochem; 2021 Dec; 80():105771. PubMed ID: 34689065
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Disinfection of water using Pt- and Ag-doped TiO2 photocatalysts.
    Suri RP; Thornton HM; Muruganandham M
    Environ Technol; 2012; 33(13-15):1651-9. PubMed ID: 22988625
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Combined treatment technology based on synergism between hydrodynamic cavitation and advanced oxidation processes.
    Gogate PR; Patil PN
    Ultrason Sonochem; 2015 Jul; 25():60-9. PubMed ID: 25190647
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hydrodynamic cavitation as a novel approach for delignification of wheat straw for paper manufacturing.
    Badve MP; Gogate PR; Pandit AB; Csoka L
    Ultrason Sonochem; 2014 Jan; 21(1):162-8. PubMed ID: 23968577
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A low-energy intensive electrochemical system for the eradication of Escherichia coli from ballast water: process development, disinfection chemistry, and kinetics modeling.
    Nanayakkara KG; Alam AK; Zheng YM; Chen JP
    Mar Pollut Bull; 2012 Jun; 64(6):1238-45. PubMed ID: 22483951
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of Arrangement of UV Light-Emitting Diodes on the Inactivation Efficiency of Microorganisms in Water.
    Oguma K; Kita R; Takizawa S
    Photochem Photobiol; 2016 Mar; 92(2):314-317. PubMed ID: 26808682
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hydrodynamic cavitation to improve bulk fluid to surface mass transfer in a nonimmersed ultraviolet system for minimal processing of opaque and transparent fluid foods.
    Milly PJ; Toledo RT; Chen J; Kazem B
    J Food Sci; 2007 Nov; 72(9):M407-13. PubMed ID: 18034735
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Disinfection of drinking water by using a novel electrochemical reactor employing carbon-cloth electrodes.
    Matsunaga T; Nakasono S; Takamuku T; Burgess JG; Nakamura N; Sode K
    Appl Environ Microbiol; 1992 Feb; 58(2):686-9. PubMed ID: 1610189
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Validation of a simple method for predicting the disinfection performance in a flow-through contactor.
    Pfeiffer V; Barbeau B
    Water Res; 2014 Feb; 49():144-56. PubMed ID: 24321249
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Rationally designed tubular coaxial-electrode copper ionization cells (CECICs) harnessing non-uniform electric field for efficient water disinfection.
    Zhou J; Wang T; Xie X
    Environ Int; 2019 Jul; 128():30-36. PubMed ID: 31029977
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparative assessment of high-intensity ultrasound and hydrodynamic cavitation processing on physico-chemical properties and microbial inactivation of peanut milk.
    Salve AR; Pegu K; Arya SS
    Ultrason Sonochem; 2019 Dec; 59():104728. PubMed ID: 31421619
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mechanism of high-power NIR laser bacteria inactivation.
    Hibst R; Graser R; Udart M; Stock K
    J Biophotonics; 2010 Jun; 3(5-6):296-303. PubMed ID: 20411570
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Kidney stone erosion by micro scale hydrodynamic cavitation and consequent kidney stone treatment.
    Perk OY; Şeşen M; Gozuacik D; Koşar A
    Ann Biomed Eng; 2012 Sep; 40(9):1895-902. PubMed ID: 22476893
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Characteristics of cavitation onset and development in a self-excited fluidic oscillator.
    Liu G; Bie H; Hao Z; Wang Y; Ren W; Hua Z
    Ultrason Sonochem; 2022 May; 86():106018. PubMed ID: 35504138
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.