BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 30056036)

  • 1. Spectroscopic investigation and computational studies on the interaction of Acriflavine with various estrogens.
    Manivannan C; Baskaran S; Vijayakumar P; Renganathan R
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Jan; 206():622-629. PubMed ID: 30056036
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interaction of acriflavine with pyrimidines: a spectroscopic approach.
    Manivannan C; Sambathkumar S; Renganathan R
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Oct; 114():316-22. PubMed ID: 23778172
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A study on the interaction of nile blue with Uracils: A spectroscopic and computational approach.
    Sambathkumar S; Manivannan C; Baskaran S; Kumar RR; Anbazhagan V
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Feb; 246():119011. PubMed ID: 33038853
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigation on the inclusion and toxicity of acriflavine with cyclodextrins: a spectroscopic approach.
    Manivannan C; Meenakshi Sundaram K; Sundararaman M; Renganathan R
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Mar; 122():164-70. PubMed ID: 24309178
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An investigation on the fluorescence quenching of 9-aminoacridine by certain pyrimidines.
    Manivannan C; Renganathan R
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Nov; 82(1):475-80. PubMed ID: 21839670
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spectroscopic investigation on the interaction of 9-aminoacridine with certain dyes.
    Manivannan C; Renganathan R
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Sep; 95():685-92. PubMed ID: 22584125
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sensitive spectrofluorometric method for the determination of ascorbic acid in pharmaceutical nutritional supplements using acriflavine as a fluorescence reagent.
    Abd Ali LI; Qader AF; Salih MI; Aboul-Enein HY
    Luminescence; 2019 Mar; 34(2):168-174. PubMed ID: 30637913
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Excited state characteristics of acridine dyes: acriflavine and acridine orange.
    Sharma VK; Sahare PD; Rastogi RC; Ghoshal SK; Mohan D
    Spectrochim Acta A Mol Biomol Spectrosc; 2003 Jun; 59(8):1799-804. PubMed ID: 12736066
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigations on photoinduced interaction of 9-aminoacridine with certain catechols and rutin.
    Manivannan C; Sundaram KM; Renganathan R; Sundararaman M
    J Fluoresc; 2012 Jul; 22(4):1113-25. PubMed ID: 22477060
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigations on the fluorescence quenching of 2,3-diazabicyclo[2.2.2]oct-2-ene by certain flavonoids.
    Anbazhagan V; Kalaiselvan A; Jaccob M; Venuvanalingam P; Renganathan R
    J Photochem Photobiol B; 2008 May; 91(2-3):143-50. PubMed ID: 18440819
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A sensitive fluorescence quenching method for the detection of tartrazine with acriflavine in soft drinks.
    Yang H; Ran G; Yan J; Zhang H; Hu X
    Luminescence; 2018 Mar; 33(2):349-355. PubMed ID: 29094465
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quenching mechanism of quinolinium-type chloride-sensitive fluorescent indicators.
    Jayaraman S; Verkman AS
    Biophys Chem; 2000 May; 85(1):49-57. PubMed ID: 10885398
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of quencher and temperature on fluorescence intensity of laser dyes: DETC and C504T.
    Jana B; Inamdar SR; H M SK
    Spectrochim Acta A Mol Biomol Spectrosc; 2017 Jan; 170():124-30. PubMed ID: 27423111
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Resonance energy transfer from dibucaine to acriflavine in polystyrene latex dispersions.
    Li Y; Kuwabara H; Gong YK; Takaki Y; Nakashima K
    J Photochem Photobiol B; 2003 Jul; 70(3):171-6. PubMed ID: 12962641
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A close look at fluorescence quenching of organic dyes by tryptophan.
    Doose S; Neuweiler H; Sauer M
    Chemphyschem; 2005 Nov; 6(11):2277-85. PubMed ID: 16224752
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluorescence quenching over short range in a donor-DNA-acceptor system.
    Ehrenschwender T; Liang Y; Unterreiner AN; Wagenknecht HA; Wolf TJ
    Chemphyschem; 2013 Apr; 14(6):1197-204. PubMed ID: 23532955
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diffusion of alpha-tocopherol in membrane models: probing the kinetics of vitamin E antioxidant action by fluorescence in real time.
    Gramlich G; Zhang J; Nau WM
    J Am Chem Soc; 2004 May; 126(17):5482-92. PubMed ID: 15113220
    [TBL] [Abstract][Full Text] [Related]  

  • 18. FRET Sensor for Erythrosine Dye Based on Organic Nanoparticles: Application to Analysis of Food Stuff.
    Mahajan PG; Bhopate DP; Kolekar GB; Patil SR
    J Fluoresc; 2016 Jul; 26(4):1467-78. PubMed ID: 27246163
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluorescence quenching of 7-amino-4-methylcoumarin by different TEMPO derivatives.
    Żamojć K; Wiczk W; Zaborowski B; Jacewicz D; Chmurzyński L
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Feb; 136 Pt C():1875-80. PubMed ID: 25467682
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inter-molecular interaction kinetics: tale of photon anti-bunching and bunching in fluorescence correlation spectroscopy (FCS).
    Sarkar A; Kumbhakar M
    Methods Appl Fluoresc; 2022 Jul; 10(4):. PubMed ID: 35817064
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.