These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
201 related articles for article (PubMed ID: 30056302)
1. Biosensors for wastewater monitoring: A review. Ejeian F; Etedali P; Mansouri-Tehrani HA; Soozanipour A; Low ZX; Asadnia M; Taheri-Kafrani A; Razmjou A Biosens Bioelectron; 2018 Oct; 118():66-79. PubMed ID: 30056302 [TBL] [Abstract][Full Text] [Related]
2. Whole-cell bacterial biosensors for rapid and effective monitoring of heavy metals and inorganic pollutants in wastewater. Olaniran AO; Hiralal L; Pillay B J Environ Monit; 2011 Oct; 13(10):2914-20. PubMed ID: 21904738 [TBL] [Abstract][Full Text] [Related]
3. A novel approach for estimating the removal efficiencies of endocrine disrupting chemicals and heavy metals in wastewater treatment processes. Chiu JMY; Degger N; Leung JYS; Po BHK; Zheng GJ; Richardson BJ; Lau TC; Wu RSS Mar Pollut Bull; 2016 Nov; 112(1-2):53-57. PubMed ID: 27568324 [TBL] [Abstract][Full Text] [Related]
4. Treatment of electroplating industry wastewater: a review on the various techniques. Rajoria S; Vashishtha M; Sangal VK Environ Sci Pollut Res Int; 2022 Oct; 29(48):72196-72246. PubMed ID: 35084684 [TBL] [Abstract][Full Text] [Related]
5. An overview of the application of electrocoagulation for mine wastewater treatment. Shahedi A; Darban AK; Jamshidi-Zanjani A; Homaee M Environ Monit Assess; 2023 Mar; 195(4):522. PubMed ID: 36988769 [TBL] [Abstract][Full Text] [Related]
6. Diatom microalgae as smart nanocontainers for biosensing wastewater pollutants: recent trends and innovations. Khan MJ; Rai A; Ahirwar A; Sirotiya V; Mourya M; Mishra S; Schoefs B; Marchand J; Bhatia SK; Varjani S; Vinayak V Bioengineered; 2021 Dec; 12(2):9531-9549. PubMed ID: 34709977 [TBL] [Abstract][Full Text] [Related]
8. Biosensor for heavy metals detection in wastewater: A review. Velusamy K; Periyasamy S; Kumar PS; Rangasamy G; Nisha Pauline JM; Ramaraju P; Mohanasundaram S; Nguyen Vo DV Food Chem Toxicol; 2022 Oct; 168():113307. PubMed ID: 35917955 [TBL] [Abstract][Full Text] [Related]
9. A review on synthesis methods and recent applications of nanomaterial in wastewater treatment: Challenges and future perspectives. Saravanan A; Kumar PS; Hemavathy RV; Jeevanantham S; Jawahar MJ; Neshaanthini JP; Saravanan R Chemosphere; 2022 Nov; 307(Pt 1):135713. PubMed ID: 35843436 [TBL] [Abstract][Full Text] [Related]
10. Adsorption of heavy metals on conventional and nanostructured materials for wastewater treatment purposes: A review. Burakov AE; Galunin EV; Burakova IV; Kucherova AE; Agarwal S; Tkachev AG; Gupta VK Ecotoxicol Environ Saf; 2018 Feb; 148():702-712. PubMed ID: 29174989 [TBL] [Abstract][Full Text] [Related]
11. Fish scales as a non-lethal tool of the toxicity of wastewater from the River Chenab. Sultana T; Siddique A; Sultana S; Mahboob S; Al-Ghanim K; Ahmed Z Environ Sci Pollut Res Int; 2017 Jan; 24(3):2464-2475. PubMed ID: 27817145 [TBL] [Abstract][Full Text] [Related]
12. Base alteration of some heavy metal concentrations on local and seasonal in Bartin River. Ucun Ozel H; Ozel HB; Cetin M; Sevik H; Gemici BT; Varol T Environ Monit Assess; 2019 Aug; 191(9):594. PubMed ID: 31463814 [TBL] [Abstract][Full Text] [Related]
13. Distribution characteristics and potential risks of heavy metals and antimicrobial resistant Escherichia coli in dairy farm wastewater in Tai'an, China. Liu C; Liu Y; Feng C; Wang P; Yu L; Liu D; Sun S; Wang F Chemosphere; 2021 Jan; 262():127768. PubMed ID: 32777611 [TBL] [Abstract][Full Text] [Related]
14. The fate of dissolved organic carbon (DOC) in the wastewater treatment process and its importance in the removal of wastewater contaminants. Katsoyiannis A; Samara C Environ Sci Pollut Res Int; 2007 Jul; 14(5):284-92. PubMed ID: 17722762 [TBL] [Abstract][Full Text] [Related]
15. Advances from conventional to real time detection of heavy metal(loid)s for water monitoring: An overview of biosensing applications. Chauhan S; Dahiya D; Sharma V; Khan N; Chaurasia D; Nadda AK; Varjani S; Pandey A; Bhargava PC Chemosphere; 2022 Nov; 307(Pt 4):136124. PubMed ID: 35995194 [TBL] [Abstract][Full Text] [Related]
16. Probabilistic health risk assessment of heavy metals at wastewater discharge points within the Vaal River Basin, South Africa. Moloi M; Ogbeide O; Voua Otomo P Int J Hyg Environ Health; 2020 Mar; 224():113421. PubMed ID: 31784328 [TBL] [Abstract][Full Text] [Related]
17. Partition of heavy metals in a tropical river system impacted by municipal waste. Duc TA; Loi VD; Thao TT Environ Monit Assess; 2013 Feb; 185(2):1907-25. PubMed ID: 22592786 [TBL] [Abstract][Full Text] [Related]
18. Microbial Fuel Cell-Based Biosensors. Cui Y; Lai B; Tang X Biosensors (Basel); 2019 Jul; 9(3):. PubMed ID: 31340591 [TBL] [Abstract][Full Text] [Related]
19. Levels of heavy metals in wastewater and soil samples from open drainage channels in Nairobi, Kenya: community health implication. Kinuthia GK; Ngure V; Beti D; Lugalia R; Wangila A; Kamau L Sci Rep; 2020 May; 10(1):8434. PubMed ID: 32439896 [TBL] [Abstract][Full Text] [Related]
20. Online monitoring of heavy metal-related toxicity using flow-through and floating microbial fuel cell biosensors. Adekunle A; Rickwood C; Tartakovsky B Environ Monit Assess; 2019 Dec; 192(1):52. PubMed ID: 31848773 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]