These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 30056322)

  • 1. Rejection of haloacetic acids in water by multi-stage reverse osmosis: Efficiency, mechanisms, and influencing factors.
    Wang L; Sun Y; Chen B
    Water Res; 2018 Nov; 144():383-392. PubMed ID: 30056322
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Removal of haloacetic acids from swimming pool water by reverse osmosis and nanofiltration.
    Yang L; She Q; Wan MP; Wang R; Chang VW; Tang CY
    Water Res; 2017 Jun; 116():116-125. PubMed ID: 28324708
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rejection of chlorinated, brominated, and iodinated trihalomethanes by multi-stage reverse osmosis: Efficiency and mechanisms.
    Fang C; Wang X; Xiao R; Ding S; Chen B; Chu W
    Chemosphere; 2021 Apr; 268():129307. PubMed ID: 33359988
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of thirteen haloacetic acids and ten trihalomethanes formation by peracetic acid and chlorine drinking water disinfection.
    Xue R; Shi H; Ma Y; Yang J; Hua B; Inniss EC; Adams CD; Eichholz T
    Chemosphere; 2017 Dec; 189():349-356. PubMed ID: 28942261
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rejection of emerging organic micropollutants in nanofiltration-reverse osmosis membrane applications.
    Xu P; Drewes JE; Bellona C; Amy G; Kim TU; Adam M; Heberer T
    Water Environ Res; 2005; 77(1):40-8. PubMed ID: 15765934
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Disinfection byproduct formation in reverse-osmosis concentrated and lyophilized natural organic matter from a drinking water source.
    Pressman JG; McCurry DL; Parvez S; Rice GE; Teuschler LK; Miltner RJ; Speth TF
    Water Res; 2012 Oct; 46(16):5343-54. PubMed ID: 22846256
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rejection of micropollutants by clean and fouled forward osmosis membrane.
    Valladares Linares R; Yangali-Quintanilla V; Li Z; Amy G
    Water Res; 2011 Dec; 45(20):6737-44. PubMed ID: 22055122
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Removal of disinfection byproducts in drinking water by flexible reverse osmosis: Efficiency comparison, fates, influencing factors, and mechanisms.
    Chen B; Zhang C; Wang L; Yang J; Sun Y
    J Hazard Mater; 2021 Jan; 401():123408. PubMed ID: 32763700
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of the removal of hydrophobic trace organic contaminants by forward osmosis and reverse osmosis.
    Xie M; Nghiem LD; Price WE; Elimelech M
    Water Res; 2012 May; 46(8):2683-92. PubMed ID: 22402269
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rejection of trace organic compounds by high-pressure membranes.
    Kim TU; Amy G; Drewes JE
    Water Sci Technol; 2005; 51(6-7):335-44. PubMed ID: 16003994
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formation of iodo-trihalomethanes, iodo-haloacetic acids, and haloacetaldehydes during chlorination and chloramination of iodine containing waters in laboratory controlled reactions.
    Postigo C; Richardson SD; Barceló D
    J Environ Sci (China); 2017 Aug; 58():127-134. PubMed ID: 28774601
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Control of disinfection byproducts (DBPs) by ozonation and peroxone process: Role of chloride on removal of DBP precursors.
    Deeudomwongsa P; Phattarapattamawong S; Andrew Lin KY
    Chemosphere; 2017 Oct; 184():1215-1222. PubMed ID: 28672704
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of reverse osmosis membrane age on rejection of NDMA precursors and formation of NDMA in finished water after full advanced treatment for potable reuse.
    Roback SL; Ishida KP; Plumlee MH
    Chemosphere; 2019 Oct; 233():120-131. PubMed ID: 31170582
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Disinfection by-product formation during seawater desalination: A review.
    Kim D; Amy GL; Karanfil T
    Water Res; 2015 Sep; 81():343-55. PubMed ID: 26099832
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Increasing RO efficiency by chemical-free ion-exchange and Donnan dialysis: Principles and practical implications.
    Vanoppen M; Stoffels G; Demuytere C; Bleyaert W; Verliefde AR
    Water Res; 2015 Sep; 80():59-70. PubMed ID: 25996753
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Formation and Variation of Brominated Disinfection By-products in A Combined Ultrafiltration and Reverse Osmosis Process for Seawater Desalination].
    Yang Z; Sun YX; Shi N; Hu HY
    Huan Jing Ke Xue; 2015 Oct; 36(10):3706-14. PubMed ID: 26841602
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High rejection reverse osmosis membrane for removal of N-nitrosamines and their precursors.
    Fujioka T; Ishida KP; Shintani T; Kodamatani H
    Water Res; 2018 Mar; 131():45-51. PubMed ID: 29268083
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Removal of fluoride and uranium by nanofiltration and reverse osmosis: a review.
    Shen J; Schäfer A
    Chemosphere; 2014 Dec; 117():679-91. PubMed ID: 25461935
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulated and unregulated halogenated disinfection byproduct formation from chlorination of saline groundwater.
    Szczuka A; Parker KM; Harvey C; Hayes E; Vengosh A; Mitch WA
    Water Res; 2017 Oct; 122():633-644. PubMed ID: 28646800
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High performance RO membranes for desalination and wastewater reclamation and their operation results.
    Henmi M; Fusaoka Y; Tomioka H; Kurihara M
    Water Sci Technol; 2010; 62(9):2134-40. PubMed ID: 21045342
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.