These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 30056352)

  • 61. Effective Removal of Cyanide and Heavy Metals from an Industrial Electroplating Stream Using Calcium Alginate Hydrogels.
    Pérez-Cid B; Calvar S; Moldes AB; Manuel Cruz J
    Molecules; 2020 Nov; 25(21):. PubMed ID: 33171849
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Mutual effects behind the simultaneous removal of toxic metals and cationic dyes by interlayer-expanded MoS
    Wu Z; Duan Q; Li X; Li J
    Environ Sci Pollut Res Int; 2019 Oct; 26(30):31344-31353. PubMed ID: 31471849
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Efficient adsorption of heavy metals from wastewater on nanocomposite beads prepared by chitosan and paper sludge.
    Xu K; Li L; Huang Z; Tian Z; Li H
    Sci Total Environ; 2022 Nov; 846():157399. PubMed ID: 35850330
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Alternative use of cross-linked polyallylamine (known as Sevelamer pharmaceutical compound) as biosorbent.
    Kyzas GZ; Siafaka PI; Bikiaris DN; Koukaras EN; Froudakis GE
    J Colloid Interface Sci; 2015 Mar; 442():49-59. PubMed ID: 25514647
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Influence of clay on the adsorption of heavy metals like copper and cadmium on chitosan.
    Prakash N; Latha S; Sudha PN; Renganathan NG
    Environ Sci Pollut Res Int; 2013 Feb; 20(2):925-38. PubMed ID: 22565982
    [TBL] [Abstract][Full Text] [Related]  

  • 66. New trends in removing heavy metals from wastewater.
    Zhao M; Xu Y; Zhang C; Rong H; Zeng G
    Appl Microbiol Biotechnol; 2016 Aug; 100(15):6509-6518. PubMed ID: 27318819
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Behaviors and Mechanisms of Adsorption of MB and Cr(VI) by Geopolymer Microspheres under Single and Binary Systems.
    Fang Y; Yang L; Rao F; Zhang K; Qin Z; Song Z; Na Z
    Molecules; 2024 Mar; 29(7):. PubMed ID: 38611839
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Facile synthesis of economical feasible fly ash-based zeolite-supported nano zerovalent iron and nickel bimetallic composite for the potential removal of heavy metals from industrial effluents.
    Angaru GKR; Choi YL; Lingamdinne LP; Choi JS; Kim DS; Koduru JR; Yang JK; Chang YY
    Chemosphere; 2021 Mar; 267():128889. PubMed ID: 33187656
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Removal of heavy metals from water sources in the developing world using low-cost materials: A review.
    Joseph L; Jun BM; Flora JRV; Park CM; Yoon Y
    Chemosphere; 2019 Aug; 229():142-159. PubMed ID: 31078029
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Heavy metal removal from water by adsorption using a low-cost geopolymer.
    Panda L; Jena SK; Rath SS; Misra PK
    Environ Sci Pollut Res Int; 2020 Jul; 27(19):24284-24298. PubMed ID: 32306254
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Adsorption kinetics of removal of a toxic dye, Malachite Green, from wastewater by using hen feathers.
    Mittal A
    J Hazard Mater; 2006 May; 133(1-3):196-202. PubMed ID: 16326001
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Removal of heavy metal ions from aqueous solution by zeolite synthesized from fly ash.
    He K; Chen Y; Tang Z; Hu Y
    Environ Sci Pollut Res Int; 2016 Feb; 23(3):2778-88. PubMed ID: 26446735
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Fe3O4/cyclodextrin polymer nanocomposites for selective heavy metals removal from industrial wastewater.
    Badruddoza AZ; Shawon ZB; Tay WJ; Hidajat K; Uddin MS
    Carbohydr Polym; 2013 Jan; 91(1):322-32. PubMed ID: 23044139
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Heavy Metal Adsorption onto Kappaphycus sp. from Aqueous Solutions: The Use of Error Functions for Validation of Isotherm and Kinetics Models.
    Rahman MS; Sathasivam KV
    Biomed Res Int; 2015; 2015():126298. PubMed ID: 26295032
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Ecofriendly biosorption of dyes and metals by bacterial biomass of Aeromonas hydrophila RC1.
    Busi S; Chatterjee R; Rajkumari J; Hnamte S
    J Environ Biol; 2016 Mar; 37(2):267-74. PubMed ID: 27097447
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Adsorption mechanisms of removing heavy metals and dyes from aqueous solution using date pits solid adsorbent.
    Al-Ghouti MA; Li J; Salamh Y; Al-Laqtah N; Walker G; Ahmad MN
    J Hazard Mater; 2010 Apr; 176(1-3):510-20. PubMed ID: 19959281
    [TBL] [Abstract][Full Text] [Related]  

  • 77. A highly efficient biomass-based adsorbent fabricated by graft copolymerization: Kinetics, isotherms, mechanism and coadsorption investigations for cationic dye and heavy metal.
    Du P; Xu L; Ke Z; Liu J; Wang T; Chen S; Mei M; Li J; Zhu S
    J Colloid Interface Sci; 2022 Jun; 616():12-22. PubMed ID: 35189500
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Application of MCM-41 for dyes removal from wastewater.
    Lee CK; Liu SS; Juang LC; Wang CC; Lin KS; Lyu MD
    J Hazard Mater; 2007 Aug; 147(3):997-1005. PubMed ID: 17337117
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Reusable self-healing hydrogels realized via in situ polymerization.
    Vivek B; Prasad E
    J Phys Chem B; 2015 Apr; 119(14):4881-7. PubMed ID: 25774447
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Efficient adsorption of Cd
    Lan T; Li P; Rehman FU; Li X; Yang W; Guo S
    Environ Sci Pollut Res Int; 2019 Nov; 26(32):33555-33567. PubMed ID: 31586316
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.