BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 30056551)

  • 1. Evolutionary Analysis of the Lysine-Rich N-terminal Cytoplasmic Domains of the Gastric H
    Diaz D; Clarke RJ
    J Membr Biol; 2018 Dec; 251(5-6):653-666. PubMed ID: 30056551
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct activation of gastric H,K-ATPase by N-terminal protein kinase C phosphorylation. Comparison of the acute regulation mechanisms of H,K-ATPase and Na,K-ATPase.
    Cornelius F; Mahmmoud YA
    Biophys J; 2003 Mar; 84(3):1690-700. PubMed ID: 12609871
    [TBL] [Abstract][Full Text] [Related]  

  • 3. E2P state stabilization by the N-terminal tail of the H,K-ATPase beta-subunit is critical for efficient proton pumping under in vivo conditions.
    Dürr KL; Abe K; Tavraz NN; Friedrich T
    J Biol Chem; 2009 Jul; 284(30):20147-54. PubMed ID: 19491099
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chimeric domain analysis of the compatibility between H(+), K(+)-ATPase and Na(+),K(+)-ATPase beta-subunits for the functional expression of gastric H(+),K(+)-ATPase.
    Asano S; Kimura T; Ueno S; Kawamura M; Takeguchi N
    J Biol Chem; 1999 Aug; 274(32):22257-65. PubMed ID: 10428793
    [TBL] [Abstract][Full Text] [Related]  

  • 5. P-type ATPases in Caenorhabditis and Drosophila: implications for evolution of the P-type ATPase subunit families with special reference to the Na,K-ATPase and H,K-ATPase subgroup.
    Okamura H; Yasuhara JC; Fambrough DM; Takeyasu K
    J Membr Biol; 2003 Jan; 191(1):13-24. PubMed ID: 12532273
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioinformatic Study of Possible Acute Regulation of Acid Secretion in the Stomach.
    Lee YHG; Cerf NT; Shalaby N; Montes MR; Clarke RJ
    J Membr Biol; 2024 Apr; 257(1-2):79-89. PubMed ID: 38436710
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cation stoichiometry and cation pathway in the Na,K-ATPase and nongastric H,K-ATPase.
    Horisberger JD; Guennoun S; Burnay M; Geering K
    Ann N Y Acad Sci; 2003 Apr; 986():127-32. PubMed ID: 12763785
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Domain swapping between Na,K- and H,K-ATPase identifies regions that specify Na,K-ATPase activity.
    Canfield VA; Levenson R
    Biochemistry; 1998 May; 37(20):7509-16. PubMed ID: 9585565
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Significance of lysine/glycine cluster structure in gastric H+,K+-ATPase.
    Asano S; Miwa K; Yashiro H; Tabuchi Y; Takeguchi N
    Jpn J Physiol; 2000 Aug; 50(4):419-28. PubMed ID: 11082540
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Extracellular domains, transmembrane segments, and intracellular domains interact to determine the cation selectivity of Na,K- and gastric H,K-ATPase.
    Mense M; Rajendran V; Blostein R; Caplan MJ
    Biochemistry; 2002 Aug; 41(31):9803-12. PubMed ID: 12146946
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cation selectivity of gastric H,K-ATPase and Na,K-ATPase chimeras.
    Blostein R; Dunbar L; Mense M; Scanzano R; Wilczynska A; Caplan MJ
    J Biol Chem; 1999 Jun; 274(26):18374-81. PubMed ID: 10373442
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibitor and ion binding sites on the gastric H,K-ATPase.
    Munson K; Garcia R; Sachs G
    Biochemistry; 2005 Apr; 44(14):5267-84. PubMed ID: 15807521
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phosphorylation of the Na+,K+-ATPase and the H+,K+-ATPase.
    Poulsen H; Morth P; Egebjerg J; Nissen P
    FEBS Lett; 2010 Jun; 584(12):2589-95. PubMed ID: 20412804
    [TBL] [Abstract][Full Text] [Related]  

  • 14. P-type ATPase diversity and evolution: the origins of ouabain sensitivity and subunit assembly.
    Takeyasu K; Okamura H; Yasuhara JC; Ogita Y; Yoshimura SH
    Cell Mol Biol (Noisy-le-grand); 2001 Mar; 47(2):325-33. PubMed ID: 11355008
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The gastric H,K ATPase as a drug target: past, present, and future.
    Sachs G; Shin JM; Vagin O; Lambrecht N; Yakubov I; Munson K
    J Clin Gastroenterol; 2007 Jul; 41 Suppl 2(Suppl 2):S226-42. PubMed ID: 17575528
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Arginine substitution of a cysteine in transmembrane helix M8 converts Na+,K+-ATPase to an electroneutral pump similar to H+,K+-ATPase.
    Holm R; Khandelwal J; Einholm AP; Andersen JP; Artigas P; Vilsen B
    Proc Natl Acad Sci U S A; 2017 Jan; 114(2):316-321. PubMed ID: 28028214
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigating the energy transduction mechanism of P-type ATPases with Fe2+-catalyzed oxidative cleavage.
    Karlish SJ
    Ann N Y Acad Sci; 2003 Apr; 986():39-49. PubMed ID: 12763773
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Na+-K+-ATPase alpha-subunit containing Q905-V930 of gastric H+-K+-ATPase alpha preferentially assembles with H+-K+-ATPase beta.
    Wang SG; Eakle KA; Levenson R; Farley RA
    Am J Physiol; 1997 Mar; 272(3 Pt 1):C923-30. PubMed ID: 9124528
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intersubunit interactions in human X,K-ATPases: role of membrane domains M9 and M10 in the assembly process and association efficiency of human, nongastric H,K-ATPase alpha subunits (ATP1al1) with known beta subunits.
    Geering K; Crambert G; Yu C; Korneenko TV; Pestov NB; Modyanov NN
    Biochemistry; 2000 Oct; 39(41):12688-98. PubMed ID: 11027149
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cloning and characterization of the entire cDNA encoded by ATP1AL1--a member of the human Na,K/H,K-ATPase gene family.
    Grishin AV; Sverdlov VE; Kostina MB; Modyanov NN
    FEBS Lett; 1994 Jul; 349(1):144-50. PubMed ID: 8045293
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.