These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 30056618)

  • 1. Seed coats as an alternative molecular factory: thinking outside the box.
    Francoz E; Lepiniec L; North HM
    Plant Reprod; 2018 Sep; 31(3):327-342. PubMed ID: 30056618
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of gene expression patterns during seed coat development in Arabidopsis.
    Dean G; Cao Y; Xiang D; Provart NJ; Ramsay L; Ahad A; White R; Selvaraj G; Datla R; Haughn G
    Mol Plant; 2011 Nov; 4(6):1074-91. PubMed ID: 21653281
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel seed coat lignins in the Cactaceae: structure, distribution and implications for the evolution of lignin diversity.
    Chen F; Tobimatsu Y; Jackson L; Nakashima J; Ralph J; Dixon RA
    Plant J; 2013 Jan; 73(2):201-11. PubMed ID: 22957702
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flavonoids and the regulation of seed size in Arabidopsis.
    Doughty J; Aljabri M; Scott RJ
    Biochem Soc Trans; 2014 Apr; 42(2):364-9. PubMed ID: 24646245
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Signalling events regulating seed coat development.
    Figueiredo DD; Köhler C
    Biochem Soc Trans; 2014 Apr; 42(2):358-63. PubMed ID: 24646244
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diversity of metabolite accumulation patterns in inner and outer seed coats of pomegranate: exploring their relationship with genetic mechanisms of seed coat development.
    Qin G; Liu C; Li J; Qi Y; Gao Z; Zhang X; Yi X; Pan H; Ming R; Xu Y
    Hortic Res; 2020; 7():10. PubMed ID: 31934341
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A deep transcriptomic analysis of pod development in the vanilla orchid (Vanilla planifolia).
    Rao X; Krom N; Tang Y; Widiez T; Havkin-Frenkel D; Belanger FC; Dixon RA; Chen F
    BMC Genomics; 2014 Nov; 15(1):964. PubMed ID: 25380694
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Compartmentation and dynamics of flavone metabolism in dry and germinated rice seeds.
    Galland M; Boutet-Mercey S; Lounifi I; Godin B; Balzergue S; Grandjean O; Morin H; Perreau F; Debeaujon I; Rajjou L
    Plant Cell Physiol; 2014 Sep; 55(9):1646-59. PubMed ID: 25008975
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Temporal transcriptome profiling of developing seeds reveals a concerted gene regulation in relation to oil accumulation in Pongamia (Millettia pinnata).
    Huang J; Hao X; Jin Y; Guo X; Shao Q; Kumar KS; Ahlawat YK; Harry DE; Joshi CP; Zheng Y
    BMC Plant Biol; 2018 Jul; 18(1):140. PubMed ID: 29986660
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetics and biochemistry of seed flavonoids.
    Lepiniec L; Debeaujon I; Routaboul JM; Baudry A; Pourcel L; Nesi N; Caboche M
    Annu Rev Plant Biol; 2006; 57():405-30. PubMed ID: 16669768
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Maternal control of seed size in plants.
    Li N; Li Y
    J Exp Bot; 2015 Feb; 66(4):1087-97. PubMed ID: 25609830
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Embryonal Control of Yellow Seed Coat Locus ECY1 Is Related to Alanine and Phenylalanine Metabolism in the Seed Embryo of Brassica napus.
    Wang F; He J; Shi J; Zheng T; Xu F; Wu G; Liu R; Liu S
    G3 (Bethesda); 2016 Apr; 6(4):1073-81. PubMed ID: 26896439
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Seed coat phenolics and the developing silique transcriptome of Brassica carinata.
    Li X; Westcott N; Links M; Gruber MY
    J Agric Food Chem; 2010 Oct; 58(20):10918-28. PubMed ID: 20925379
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Seeds as oil factories.
    Baud S
    Plant Reprod; 2018 Sep; 31(3):213-235. PubMed ID: 29429143
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deposition and localization of lipid polyester in developing seeds of Brassica napus and Arabidopsis thaliana.
    Molina I; Ohlrogge JB; Pollard M
    Plant J; 2008 Feb; 53(3):437-49. PubMed ID: 18179651
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gene expression in the lignin biosynthesis pathway during soybean seed development.
    Baldoni A; Von Pinho EV; Fernandes JS; Abreu VM; Carvalho ML
    Genet Mol Res; 2013 Feb; 12(3):2618-24. PubMed ID: 23479147
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pinoresinol-lariciresinol reductase gene expression and secoisolariciresinol diglucoside accumulation in developing flax (Linum usitatissimum) seeds.
    Hano C; Martin I; Fliniaux O; Legrand B; Gutierrez L; Arroo RR; Mesnard F; Lamblin F; Lainé E
    Planta; 2006 Nov; 224(6):1291-301. PubMed ID: 16794840
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Networks controlling seed size in Arabidopsis.
    Orozco-Arroyo G; Paolo D; Ezquer I; Colombo L
    Plant Reprod; 2015 Mar; 28(1):17-32. PubMed ID: 25656951
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polyphenol oxidase activity and differential accumulation of polyphenolics in seed coats of pinto bean (Phaseolus vulgaris L.) characterize postharvest color changes.
    Marles MA; Vandenberg A; Bett KE
    J Agric Food Chem; 2008 Aug; 56(16):7049-56. PubMed ID: 18666779
    [TBL] [Abstract][Full Text] [Related]  

  • 20. System level analysis of cacao seed ripening reveals a sequential interplay of primary and secondary metabolism leading to polyphenol accumulation and preparation of stress resistance.
    Wang L; Nägele T; Doerfler H; Fragner L; Chaturvedi P; Nukarinen E; Bellaire A; Huber W; Weiszmann J; Engelmeier D; Ramsak Z; Gruden K; Weckwerth W
    Plant J; 2016 Aug; 87(3):318-32. PubMed ID: 27136060
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.