BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

293 related articles for article (PubMed ID: 30056700)

  • 1. Origin of Hydrophilic Surface Functionalization-Induced Thermal Conductance Enhancement across Solid-Water Interfaces.
    Huang D; Ma R; Zhang T; Luo T
    ACS Appl Mater Interfaces; 2018 Aug; 10(33):28159-28165. PubMed ID: 30056700
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular Fin Effect from Heterogeneous Self-Assembled Monolayer Enhances Thermal Conductance across Hard-Soft Interfaces.
    Wei X; Zhang T; Luo T
    ACS Appl Mater Interfaces; 2017 Oct; 9(39):33740-33748. PubMed ID: 28885818
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of Hydrogen Bonds in Thermal Transport across Hard/Soft Material Interfaces.
    Zhang T; Gans-Forrest AR; Lee E; Zhang X; Qu C; Pang Y; Sun F; Luo T
    ACS Appl Mater Interfaces; 2016 Dec; 8(48):33326-33334. PubMed ID: 27934170
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polymeric Self-Assembled Monolayers Anomalously Improve Thermal Transport across Graphene/Polymer Interfaces.
    Zhang L; Liu L
    ACS Appl Mater Interfaces; 2017 Aug; 9(34):28949-28958. PubMed ID: 28766936
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tuning Water Slip Behavior in Nanochannels Using Self-Assembled Monolayers.
    Huang D; Zhang T; Xiong G; Xu L; Qu Z; Lee E; Luo T
    ACS Appl Mater Interfaces; 2019 Sep; 11(35):32481-32488. PubMed ID: 31408315
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancing the Thermal Conductance of Polymer and Sapphire Interface via Self-Assembled Monolayer.
    Zheng K; Sun F; Zhu J; Ma Y; Li X; Tang D; Wang F; Wang X
    ACS Nano; 2016 Aug; 10(8):7792-8. PubMed ID: 27501117
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low-Cost Nanostructures from Nanoparticle-Assisted Large-Scale Lithography Significantly Enhance Thermal Energy Transport across Solid Interfaces.
    Lee E; Menumerov E; Hughes RA; Neretina S; Luo T
    ACS Appl Mater Interfaces; 2018 Oct; 10(40):34690-34698. PubMed ID: 30209944
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermal Transport across SiC-Water Interfaces.
    Gonzalez-Valle CU; Kumar S; Ramos-Alvarado B
    ACS Appl Mater Interfaces; 2018 Aug; 10(34):29179-29186. PubMed ID: 30063129
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bonding-induced thermal transport enhancement across a hard/soft material interface using molecular monolayers.
    Yuan C; Huang M; Cheng Y; Luo X
    Phys Chem Chem Phys; 2017 Mar; 19(10):7352-7358. PubMed ID: 28240333
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermal conductance of hydrophilic and hydrophobic interfaces.
    Ge Z; Cahill DG; Braun PV
    Phys Rev Lett; 2006 May; 96(18):186101. PubMed ID: 16712374
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-Assembled Monolayers for the Polymer/Semiconductor Interface with Improved Interfacial Thermal Management.
    Lu J; Yuan K; Sun F; Zheng K; Zhang Z; Zhu J; Wang X; Zhang X; Zhuang Y; Ma Y; Cao X; Zhang J; Tang D
    ACS Appl Mater Interfaces; 2019 Nov; 11(45):42708-42714. PubMed ID: 31625728
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A molecular dynamics study on heat transfer characteristics at the interfaces of alkanethiolate self-assembled monolayer and organic solvent.
    Kikugawa G; Ohara T; Kawaguchi T; Torigoe E; Hagiwara Y; Matsumoto Y
    J Chem Phys; 2009 Feb; 130(7):074706. PubMed ID: 19239308
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simulations of water at the interface with hydrophilic self-assembled monolayers.
    Stevens MJ; Grest GS
    Biointerphases; 2008 Sep; 3(3):FC13-22. PubMed ID: 20408690
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermal transport across flat and curved gold-water interfaces: Assessing the effects of the interfacial modeling parameters.
    Paniagua-Guerra LE; Ramos-Alvarado B
    J Chem Phys; 2023 Apr; 158(13):134717. PubMed ID: 37031121
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Equilibrium and nonequilibrium molecular dynamics simulations of thermal conductance at solid-gas interfaces.
    Liang Z; Evans W; Keblinski P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Feb; 87(2):022119. PubMed ID: 23496472
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of light atoms on thermal transport across solid-solid interfaces.
    Li R; Gordiz K; Henry A; Hopkins PE; Lee E; Luo T
    Phys Chem Chem Phys; 2019 Aug; 21(31):17029-17035. PubMed ID: 31353367
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct observation of tunable thermal conductance at solid/porous crystalline solid interfaces induced by water adsorbates.
    Wang G; Fan H; Li J; Li Z; Zhou Y
    Nat Commun; 2024 Mar; 15(1):2304. PubMed ID: 38485939
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deconstructing Temperature Gradients across Fluid Interfaces: The Structural Origin of the Thermal Resistance of Liquid-Vapor Interfaces.
    Muscatello J; Chacón E; Tarazona P; Bresme F
    Phys Rev Lett; 2017 Jul; 119(4):045901. PubMed ID: 29341757
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermal Transport at Solid-Liquid Interfaces: High Pressure Facilitates Heat Flow through Nonlocal Liquid Structuring.
    Han H; Mérabia S; Müller-Plathe F
    J Phys Chem Lett; 2017 May; 8(9):1946-1951. PubMed ID: 28403613
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermal Transport across Surfactant Layers on Gold Nanorods in Aqueous Solution.
    Wu X; Ni Y; Zhu J; Burrows ND; Murphy CJ; Dumitrica T; Wang X
    ACS Appl Mater Interfaces; 2016 Apr; 8(16):10581-9. PubMed ID: 26938771
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.