These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 30056718)

  • 1. Intermolecular Interaction of Polymer Brushes Containing Phosphorylcholine and Inverse-Phosphorylcholine.
    Mihara S; Yamaguchi K; Kobayashi M
    Langmuir; 2019 Feb; 35(5):1172-1180. PubMed ID: 30056718
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Choline phosphate functionalized cellulose membrane: A potential hemostatic dressing based on a unique bioadhesion mechanism.
    Yang X; Li N; Constantinesco I; Yu K; Kizhakkedathu JN; Brooks DE
    Acta Biomater; 2016 Aug; 40():212-225. PubMed ID: 27345136
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Erratum: Preparation of Poly(pentafluorophenyl acrylate) Functionalized SiO2 Beads for Protein Purification.
    J Vis Exp; 2019 Apr; (146):. PubMed ID: 31038480
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multilayer Choline Phosphate Molecule Modified Surface with Enhanced Cell Adhesion but Resistance to Protein Adsorption.
    Chen X; Yang M; Liu B; Li Z; Tan H; Li J
    Langmuir; 2017 Aug; 33(33):8295-8301. PubMed ID: 28759995
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adhesion and friction properties of fluoropolymer brushes: on the tribological inertness of fluorine.
    Bhairamadgi NS; Pujari SP; van Rijn CJ; Zuilhof H
    Langmuir; 2014 Oct; 30(42):12532-40. PubMed ID: 25313839
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adhesion and friction properties of polymer brushes: fluoro versus nonfluoro polymer brushes at varying thickness.
    Bhairamadgi NS; Pujari SP; Leermakers FA; van Rijn CJ; Zuilhof H
    Langmuir; 2014 Mar; 30(8):2068-76. PubMed ID: 24555721
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wettability and antifouling behavior on the surfaces of superhydrophilic polymer brushes.
    Kobayashi M; Terayama Y; Yamaguchi H; Terada M; Murakami D; Ishihara K; Takahara A
    Langmuir; 2012 May; 28(18):7212-22. PubMed ID: 22500465
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioactive zwitterionic polymer brushes grafted from silicon wafers via SI-ATRP for enhancement of antifouling properties and endothelial cell selectivity.
    Wei Y; Zhang J; Feng X; Liu D
    J Biomater Sci Polym Ed; 2017 Dec; 28(18):2101-2116. PubMed ID: 28891389
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative evaluation of interaction force of fibrinogen at well-defined surfaces with various structures.
    Chen W; Inoue Y; Ishihara K
    J Biomater Sci Polym Ed; 2014; 25(14-15):1629-40. PubMed ID: 25025547
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of Salt on Phosphorylcholine-based Zwitterionic Polymer Brushes.
    Zhang Z; Moxey M; Alswieleh A; Morse AJ; Lewis AL; Geoghegan M; Leggett GJ
    Langmuir; 2016 May; 32(20):5048-57. PubMed ID: 27133955
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative evaluation of interaction force between functional groups in protein and polymer brush surfaces.
    Sakata S; Inoue Y; Ishihara K
    Langmuir; 2014 Mar; 30(10):2745-51. PubMed ID: 24564418
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis of functional polymer brushes containing carbohydrate residues in the pyranose form and their specific and nonspecific interactions with proteins.
    Yu K; Kizhakkedathu JN
    Biomacromolecules; 2010 Nov; 11(11):3073-85. PubMed ID: 20954736
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of Hydration Water Bound to Choline Phosphate-Containing Polymers.
    Shiomoto S; Inoue K; Higuchi H; Nishimura SN; Takaba H; Tanaka M; Kobayashi M
    Biomacromolecules; 2022 Jul; 23(7):2999-3008. PubMed ID: 35736642
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Understanding the Oxidative Stability of Antifouling Polymer Brushes.
    Du Y; Gao J; Chen T; Zhang C; Ji J; Xu ZK
    Langmuir; 2017 Jul; 33(29):7298-7304. PubMed ID: 28650665
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Zwitterionic polymer brushes via dopamine-initiated ATRP from PET sheets for improving hemocompatible and antifouling properties.
    Jin X; Yuan J; Shen J
    Colloids Surf B Biointerfaces; 2016 Sep; 145():275-284. PubMed ID: 27208441
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Grafting of Polymer Brushes from Xanthate-Functionalized Silica Particles.
    Ohno K; Yahata Y; Sakaue M; Ladmiral V
    Chemistry; 2019 Feb; 25(8):2059-2068. PubMed ID: 30421837
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Co-nonsolvency effects for surface-initiated poly(2-(methacryloyloxy)ethyl phosphorylcholine) brushes in alcohol/water mixtures.
    Edmondson S; Nguyen NT; Lewis AL; Armes SP
    Langmuir; 2010 May; 26(10):7216-26. PubMed ID: 20380474
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Room temperature, aqueous post-polymerization modification of glycidyl methacrylate-containing polymer brushes prepared via surface-initiated atom transfer radical polymerization.
    Barbey R; Klok HA
    Langmuir; 2010 Dec; 26(23):18219-30. PubMed ID: 21062007
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluorinated Polymer Zwitterions: Choline Phosphates and Phosphorylcholines.
    Zhou L; Triozzi A; Figueiredo M; Emrick T
    ACS Macro Lett; 2021 Oct; 10(10):1204-1209. PubMed ID: 35549047
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis and Hydration Behavior of a Hydrolysis-Resistant Quasi-Choline Phosphate Zwitterionic Polymer.
    Mukai M; Ihara D; Chu CW; Cheng CH; Takahara A
    Biomacromolecules; 2020 Jun; 21(6):2125-2131. PubMed ID: 32315168
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.