These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 30058262)

  • 1. Self-Assembly of CoPt Magnetic Nanoparticle Arrays and its Underlying Forces.
    Bian B; Chen G; Zheng Q; Du J; Lu H; Liu JP; Hu Y; Zhang Z
    Small; 2018 Aug; 14(34):e1801184. PubMed ID: 30058262
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interplay between Short- and Long-Ranged Forces Leading to the Formation of Ag Nanoparticle Superlattice.
    Lee J; Nakouzi E; Xiao D; Wu Z; Song M; Ophus C; Chun J; Li D
    Small; 2019 Aug; 15(33):e1901966. PubMed ID: 31225719
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanistic Understanding of the Growth Kinetics and Dynamics of Nanoparticle Superlattices by Coupling Interparticle Forces from Real-Time Measurements.
    Lee J; Nakouzi E; Song M; Wang B; Chun J; Li D
    ACS Nano; 2018 Dec; 12(12):12778-12787. PubMed ID: 30422615
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Asymmetric van der Waals forces drive orientation of compositionally anisotropic nanocylinders within smectic arrays: experiment and simulation.
    Smith BD; Fichthorn KA; Kirby DJ; Quimby LM; Triplett DA; González P; Hernández D; Keating CD
    ACS Nano; 2014 Jan; 8(1):657-70. PubMed ID: 24308771
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dipolar interaction effects in the magnetic and magnetotransport properties of ordered nanoparticle arrays.
    Kechrakos D; Trohidou KN
    J Nanosci Nanotechnol; 2008 Jun; 8(6):2929-43. PubMed ID: 18681029
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Colloidal synthesis and self-assembly of CoPt(3) nanocrystals.
    Shevchenko EV; Talapin DV; Rogach AL; Kornowski A; Haase M; Weller H
    J Am Chem Soc; 2002 Sep; 124(38):11480-5. PubMed ID: 12236762
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Magnetic field-induced assembly of oriented superlattices from maghemite nanocubes.
    Ahniyaz A; Sakamoto Y; Bergström L
    Proc Natl Acad Sci U S A; 2007 Nov; 104(45):17570-4. PubMed ID: 17978189
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Real-time imaging of metallic supraparticle assembly during nanoparticle synthesis.
    Wang M; Park C; Woehl TJ
    Nanoscale; 2022 Jan; 14(2):312-319. PubMed ID: 34928292
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural diversity in binary nanoparticle superlattices.
    Shevchenko EV; Talapin DV; Kotov NA; O'Brien S; Murray CB
    Nature; 2006 Jan; 439(7072):55-9. PubMed ID: 16397494
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct observation of nanoparticle superlattice formation by using liquid cell transmission electron microscopy.
    Park J; Zheng H; Lee WC; Geissler PL; Rabani E; Alivisatos AP
    ACS Nano; 2012 Mar; 6(3):2078-85. PubMed ID: 22360715
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Van der Waals versus dipolar forces controlling mesoscopic organizations of magnetic nanocrystals.
    Lalatonne Y; Richardi J; Pileni MP
    Nat Mater; 2004 Feb; 3(2):121-5. PubMed ID: 14730356
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interparticle Forces Underlying Nanoparticle Self-Assemblies.
    Luo D; Yan C; Wang T
    Small; 2015 Dec; 11(45):5984-6008. PubMed ID: 26436692
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Magnetic Nanoparticle Arrays Self-Assembled on Perpendicular Magnetic Recording Media.
    Mohtasebzadeh AR; Ye L; Crawford TM
    Int J Mol Sci; 2015 Aug; 16(8):19769-79. PubMed ID: 26307967
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Liquid-cell scanning transmission electron microscopy and fluorescence correlation spectroscopy of DNA-directed gold nanoparticle assemblies.
    Jungjohann KL; Wheeler DR; Polsky R; Brozik SM; Brozik JA; Rudolph AR
    Micron; 2019 Apr; 119():54-63. PubMed ID: 30660856
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reinforcing Supramolecular Bonding with Magnetic Dipole Interactions to Assemble Dynamic Nanoparticle Superlattices.
    Santos PJ; Macfarlane RJ
    J Am Chem Soc; 2020 Jan; 142(3):1170-1174. PubMed ID: 31905284
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dipolar driven spontaneous self assembly of superparamagnetic Co nanoparticles into micrometric rice-grain like structures.
    Varón M; Peña L; Balcells L; Skumryev V; Martinez B; Puntes V
    Langmuir; 2010 Jan; 26(1):109-16. PubMed ID: 20038165
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanoparticle Interactions Guided by Shape-Dependent Hydrophobic Forces.
    Tan SF; Raj S; Bisht G; Annadata HV; Nijhuis CA; Král P; Mirsaidov U
    Adv Mater; 2018 Apr; 30(16):e1707077. PubMed ID: 29537111
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DNA- and Field-Mediated Assembly of Magnetic Nanoparticles into High-Aspect Ratio Crystals.
    Park SS; Urbach ZJ; Brisbois CA; Parker KA; Partridge BE; Oh T; Dravid VP; Olvera de la Cruz M; Mirkin CA
    Adv Mater; 2020 Jan; 32(4):e1906626. PubMed ID: 31814172
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Directed Self-Assembly of sub-10 nm Particles: Role of Driving Forces and Template Geometry in Packing and Ordering.
    Mehraeen S; Asbahi M; Fuke W; Yang JK; Cao J; Tan MC
    Langmuir; 2015 Aug; 31(31):8548-57. PubMed ID: 26147183
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanoparticle Assembly in High Polymer Concentration Solutions Increases Superlattice Stability.
    Lee MS; Alexander-Katz A; Macfarlane RJ
    Small; 2021 Sep; 17(36):e2102107. PubMed ID: 34319651
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.