These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
642 related articles for article (PubMed ID: 30058281)
21. Coculture of mesenchymal stem cells and endothelial cells enhances host tissue integration and epidermis maturation through AKT activation in gelatin methacryloyl hydrogel-based skin model. Zhang X; Li J; Ye P; Gao G; Hubbell K; Cui X Acta Biomater; 2017 Sep; 59():317-326. PubMed ID: 28684336 [TBL] [Abstract][Full Text] [Related]
22. Three-dimensional bioprinted GelMA/GO composite hydrogel for stem cell osteogenic differentiation both in vitro and in vivo. Jiang Y; Zhou D; Jiang Y J Biomater Appl; 2024 May; 38(10):1087-1099. PubMed ID: 38561006 [TBL] [Abstract][Full Text] [Related]
23. Enhanced Vascular-like Network Formation of Encapsulated HUVECs and ADSCs Coculture in Growth Factors Conjugated GelMA Hydrogels. Bupphathong S; Lim J; Fang HW; Tao HY; Yeh CE; Ku TA; Huang W; Kuo TY; Lin CH ACS Biomater Sci Eng; 2024 May; 10(5):3306-3315. PubMed ID: 38634810 [TBL] [Abstract][Full Text] [Related]
24. Enhanced osteogenesis of human mesenchymal stem cells by self-assembled peptide hydrogel functionalized with glutamic acid templated peptides. Onak G; Gökmen O; Yaralı ZB; Karaman O J Tissue Eng Regen Med; 2020 Sep; 14(9):1236-1249. PubMed ID: 32615018 [TBL] [Abstract][Full Text] [Related]
25. [Effects of in situ cross-linked graphene oxide-containing gelatin methacrylate anhydride hydrogel on wound vascularization of full-thickness skin defect in mice]. Liang LT; Song W; Zhang C; Li Z; Yao B; Zhang MD; Yuan XY; Jirigala E; Fu XB; Huang S; Zhu P Zhonghua Shao Shang Yu Chuang Mian Xiu Fu Za Zhi; 2022 Jul; 38(7):616-628. PubMed ID: 35899412 [No Abstract] [Full Text] [Related]
26. ZIF-8 modified multifunctional injectable photopolymerizable GelMA hydrogel for the treatment of periodontitis. Liu Y; Li T; Sun M; Cheng Z; Jia W; Jiao K; Wang S; Jiang K; Yang Y; Dai Z; Liu L; Liu G; Luo Y Acta Biomater; 2022 Jul; 146():37-48. PubMed ID: 35364317 [TBL] [Abstract][Full Text] [Related]
27. 14-3-3ε protein-loaded 3D hydrogels favor osteogenesis. Aldana AA; Uhart M; Abraham GA; Bustos DM; Boccaccini AR J Mater Sci Mater Med; 2020 Nov; 31(11):105. PubMed ID: 33141369 [TBL] [Abstract][Full Text] [Related]
28. Synthesis of Silanized Bioactive Glass/Gelatin Methacrylate (GelMA/Si-BG) composite hydrogel for Bone Tissue Engineering Application. Chen H; Lin YM; Bupphathong S; Lim J; Huang JE; Huang W; Hsieh TAS; Lin CH J Mech Behav Biomed Mater; 2023 Nov; 147():106159. PubMed ID: 37797555 [TBL] [Abstract][Full Text] [Related]
29. A well plate-based GelMA photo-crosslinking system with tunable hydrogel mechanical properties to regulate the PTH-mediated osteogenic fate. Paek K; Woo S; Song SJ; Kim MK; Yi K; Chung S; Kim JA Biofabrication; 2024 Feb; 16(2):. PubMed ID: 38373340 [TBL] [Abstract][Full Text] [Related]
30. Porous Gelatin Methacrylate Gel Engineered by Freeze-Ultraviolet Promotes Osteogenesis and Angiogenesis. Wang H; Li J; Qin R; Guo F; Wang R; Bian Y; Chen H; Yuan H; Pan Y; Jin J; Wang Y; Du Y; Wu F ACS Biomater Sci Eng; 2024 Sep; 10(9):5764-5773. PubMed ID: 39190529 [TBL] [Abstract][Full Text] [Related]
31. A biphasic calcium phosphate/acylated methacrylate gelatin composite hydrogel promotes osteogenesis and bone repair. Ren-Jie Xu ; Jin-Jin Ma ; Yu X; Zhou XQ; Zhang JY; Li YD; Yang HL; Saijilafu ; Chen GX Connect Tissue Res; 2023 Sep; 64(5):445-456. PubMed ID: 37171221 [TBL] [Abstract][Full Text] [Related]
32. Pectin Methacrylate (PEMA) and Gelatin-Based Hydrogels for Cell Delivery: Converting Waste Materials into Biomaterials. Mehrali M; Thakur A; Kadumudi FB; Pierchala MK; Cordova JAV; Shahbazi MA; Mehrali M; Pennisi CP; Orive G; Gaharwar AK; Dolatshahi-Pirouz A ACS Appl Mater Interfaces; 2019 Apr; 11(13):12283-12297. PubMed ID: 30864429 [TBL] [Abstract][Full Text] [Related]
33. A 3D-printed PRP-GelMA hydrogel promotes osteochondral regeneration through M2 macrophage polarization in a rabbit model. Jiang G; Li S; Yu K; He B; Hong J; Xu T; Meng J; Ye C; Chen Y; Shi Z; Feng G; Chen W; Yan S; He Y; Yan R Acta Biomater; 2021 Jul; 128():150-162. PubMed ID: 33894346 [TBL] [Abstract][Full Text] [Related]
34. Gelatin-Based Matrices as a Tunable Platform To Study in Vitro and in Vivo 3D Cell Invasion. Peter M; Singh A; Mohankumar K; Jeenger R; Joge PA; Gatne MM; Tayalia P ACS Appl Bio Mater; 2019 Feb; 2(2):916-929. PubMed ID: 35016295 [TBL] [Abstract][Full Text] [Related]
35. Fabrication of hydrogels with elasticity changed by alkaline phosphatase for stem cell culture. Toda H; Yamamoto M; Uyama H; Tabata Y Acta Biomater; 2016 Jan; 29():215-227. PubMed ID: 26525116 [TBL] [Abstract][Full Text] [Related]
36. In Situ Forming Gelatin Hydrogels-Directed Angiogenic Differentiation and Activity of Patient-Derived Human Mesenchymal Stem Cells. Lee Y; Balikov DA; Lee JB; Lee SH; Lee SH; Lee JH; Park KD; Sung HJ Int J Mol Sci; 2017 Aug; 18(8):. PubMed ID: 28777301 [TBL] [Abstract][Full Text] [Related]
37. Development of gelatin-methacryloyl composite carriers for bone morphogenetic Protein-2 delivery: A potential strategy for spinal fusion. Li T; Zhang X; Hu Y; Gao X; Yao X; Xu Z J Biomater Appl; 2024 Sep; 39(3):195-206. PubMed ID: 38877801 [TBL] [Abstract][Full Text] [Related]
39. Hydrogen bonds autonomously powered gelatin methacrylate hydrogels with super-elasticity, self-heal and underwater self-adhesion for sutureless skin and stomach surgery and E-skin. Liu B; Wang Y; Miao Y; Zhang X; Fan Z; Singh G; Zhang X; Xu K; Li B; Hu Z; Xing M Biomaterials; 2018 Jul; 171():83-96. PubMed ID: 29684678 [TBL] [Abstract][Full Text] [Related]
40. Bioprinted PDLSCs with high-concentration GelMA hydrogels exhibit enhanced osteogenic differentiation in vitro and promote bone regeneration in vivo. Zhu Y; Wang W; Chen Q; Ren T; Yang J; Li G; Qi Y; Yuan C; Wang P Clin Oral Investig; 2023 Sep; 27(9):5153-5170. PubMed ID: 37428274 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]