These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
642 related articles for article (PubMed ID: 30058281)
41. Matrix stiffness regulation of integrin-mediated mechanotransduction during osteogenic differentiation of human mesenchymal stem cells. Shih YR; Tseng KF; Lai HY; Lin CH; Lee OK J Bone Miner Res; 2011 Apr; 26(4):730-8. PubMed ID: 20939067 [TBL] [Abstract][Full Text] [Related]
42. Gelatin methacrylate hydrogel loaded with brain-derived neurotrophic factor enhances small molecule-induced neurogenic differentiation of stem cells from apical papilla. Zou T; Jiang S; Yi B; Chen Q; Heng BC; Zhang C J Biomed Mater Res A; 2022 Mar; 110(3):623-634. PubMed ID: 34590393 [TBL] [Abstract][Full Text] [Related]
43. Injectable chitosan-hydroxyapatite hydrogels promote the osteogenic differentiation of mesenchymal stem cells. Ressler A; Ródenas-Rochina J; Ivanković M; Ivanković H; Rogina A; Gallego Ferrer G Carbohydr Polym; 2018 Oct; 197():469-477. PubMed ID: 30007636 [TBL] [Abstract][Full Text] [Related]
44. Gelatin Templated Polypeptide Co-Cross-Linked Hydrogel for Bone Regeneration. Qiao Y; Liu X; Zhou X; Zhang H; Zhang W; Xiao W; Pan G; Cui W; Santos HA; Shi Q Adv Healthc Mater; 2020 Jan; 9(1):e1901239. PubMed ID: 31814318 [TBL] [Abstract][Full Text] [Related]
45. Degradation rate affords a dynamic cue to regulate stem cells beyond varied matrix stiffness. Peng Y; Liu QJ; He T; Ye K; Yao X; Ding J Biomaterials; 2018 Sep; 178():467-480. PubMed ID: 29685517 [TBL] [Abstract][Full Text] [Related]
46. Fabrication of Stiffness Gradients of GelMA Hydrogels Using a 3D Printed Micromixer. Lavrentieva A; Fleischhammer T; Enders A; Pirmahboub H; Bahnemann J; Pepelanova I Macromol Biosci; 2020 Jul; 20(7):e2000107. PubMed ID: 32537875 [TBL] [Abstract][Full Text] [Related]
47. A hybrid hydrogel encapsulating human umbilical cord mesenchymal stem cells enhances diabetic wound healing. Xu H; Wang J; Wu D; Qin D J Mater Sci Mater Med; 2022 Jul; 33(8):60. PubMed ID: 35849219 [TBL] [Abstract][Full Text] [Related]
48. Reduced Graphene Oxide Incorporated GelMA Hydrogel Promotes Angiogenesis For Wound Healing Applications. Rehman SRU; Augustine R; Zahid AA; Ahmed R; Tariq M; Hasan A Int J Nanomedicine; 2019; 14():9603-9617. PubMed ID: 31824154 [TBL] [Abstract][Full Text] [Related]
49. The use of covalently immobilized stem cell factor to selectively affect hematopoietic stem cell activity within a gelatin hydrogel. Mahadik BP; Pedron Haba S; Skertich LJ; Harley BA Biomaterials; 2015 Oct; 67():297-307. PubMed ID: 26232879 [TBL] [Abstract][Full Text] [Related]
50. Photosensitive Hydrogels Encapsulating DPSCs and AgNPs for Dental Pulp Regeneration. He Y; Zhang Y; Hu F; Chen M; Wang B; Li Y; Xu H; Dong N; Zhang C; Hu Y; Lin Z; Peng Y; Ye Q; Luo L Int Dent J; 2024 Aug; 74(4):836-846. PubMed ID: 38369441 [TBL] [Abstract][Full Text] [Related]
51. Control the fate of human umbilical cord mesenchymal stem cells with dual-enzymatically cross-linked gelatin hydrogels for potential applications in nerve regeneration. Li J; Gao F; Ma S; Zhang Y; Zhang J; Guan F; Yao M J Tissue Eng Regen Med; 2020 Sep; 14(9):1261-1271. PubMed ID: 32633057 [TBL] [Abstract][Full Text] [Related]
52. Fiber reinforced GelMA hydrogel to induce the regeneration of corneal stroma. Kong B; Chen Y; Liu R; Liu X; Liu C; Shao Z; Xiong L; Liu X; Sun W; Mi S Nat Commun; 2020 Mar; 11(1):1435. PubMed ID: 32188843 [TBL] [Abstract][Full Text] [Related]
53. Combined Molybdenum Gelatine Methacrylate Injectable Nano-Hydrogel Effective Against Diabetic Bone Regeneration. Liao X; Shen M; Li T; Feng L; Lin Z; Shi G; Pei G; Cai X Int J Nanomedicine; 2023; 18():5925-5942. PubMed ID: 37881608 [TBL] [Abstract][Full Text] [Related]
54. Controlling the adhesion and differentiation of mesenchymal stem cells using hyaluronic acid-based, doubly crosslinked networks. Jha AK; Xu X; Duncan RL; Jia X Biomaterials; 2011 Apr; 32(10):2466-78. PubMed ID: 21216457 [TBL] [Abstract][Full Text] [Related]
55. Transdermal regulation of vascular network bioengineering using a photopolymerizable methacrylated gelatin hydrogel. Lin RZ; Chen YC; Moreno-Luna R; Khademhosseini A; Melero-Martin JM Biomaterials; 2013 Sep; 34(28):6785-96. PubMed ID: 23773819 [TBL] [Abstract][Full Text] [Related]
56. Dynamic Mechanics-Modulated Hydrogels to Regulate the Differentiation of Stem-Cell Spheroids in Soft Microniches and Modeling of the Nonlinear Behavior. Zhang J; Yang H; Abali BE; Li M; Xia Y; Haag R Small; 2019 Jul; 15(30):e1901920. PubMed ID: 31183958 [TBL] [Abstract][Full Text] [Related]
57. Enzymatically cross-linked gelatin-phenol hydrogels with a broader stiffness range for osteogenic differentiation of human mesenchymal stem cells. Wang LS; Du C; Chung JE; Kurisawa M Acta Biomater; 2012 May; 8(5):1826-37. PubMed ID: 22343003 [TBL] [Abstract][Full Text] [Related]
58. The Effect of Addition of Calcium Phosphate Particles to Hydrogel-Based Composite Materials on Stiffness and Differentiation of Mesenchymal Stromal Cells toward Osteogenesis. Sen KS; Duarte Campos DF; Köpf M; Blaeser A; Fischer H Adv Healthc Mater; 2018 Sep; 7(18):e1800343. PubMed ID: 29943520 [TBL] [Abstract][Full Text] [Related]
59. Free radical-scavenging composite gelatin methacryloyl hydrogels for cell encapsulation. Lee GM; Kim SJ; Kim EM; Kim E; Lee S; Lee E; Park HH; Shin H Acta Biomater; 2022 Sep; 149():96-110. PubMed ID: 35779769 [TBL] [Abstract][Full Text] [Related]
60. Improved vasculogenesis and bone matrix formation through coculture of endothelial cells and stem cells in tissue-specific methacryloyl gelatin-based hydrogels. Wenz A; Tjoeng I; Schneider I; Kluger PJ; Borchers K Biotechnol Bioeng; 2018 Oct; 115(10):2643-2653. PubMed ID: 29981277 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]