These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 30058329)

  • 1. Renormalization of Ionic Solvation Shells in Nanochannels.
    Zhou K; Xu Z
    ACS Appl Mater Interfaces; 2018 Aug; 10(33):27801-27809. PubMed ID: 30058329
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure and self-diffusivity of alkali-halide electrolytes in neutral and charged graphene nanochannels.
    Rezlerová E; Moučka F; Předota M; Lísal M
    Phys Chem Chem Phys; 2023 Aug; 25(32):21579-21594. PubMed ID: 37548441
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ab Initio Molecular Dynamics Investigation of the Solvation States of Hydrated Ions in Confined Water.
    Qian C; Zhou K
    Inorg Chem; 2023 Oct; 62(43):17756-17765. PubMed ID: 37855150
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reduced Ionic Conductivity but Enhanced Local Ionic Conductivity in Nanochannels.
    Zhou K; Jiao S; Chen Y; Qin H; Liu Y
    Langmuir; 2021 Nov; 37(43):12577-12585. PubMed ID: 34672598
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ion transport in complex layered graphene-based membranes with tuneable interlayer spacing.
    Cheng C; Jiang G; Garvey CJ; Wang Y; Simon GP; Liu JZ; Li D
    Sci Adv; 2016 Feb; 2(2):e1501272. PubMed ID: 26933689
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Field-enhanced selectivity in nanoconfined ionic transport.
    Zhou K; Xu Z
    Nanoscale; 2020 Mar; 12(11):6512-6521. PubMed ID: 32154818
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ion transport in graphene nanofluidic channels.
    Xie Q; Xin F; Park HG; Duan C
    Nanoscale; 2016 Dec; 8(47):19527-19535. PubMed ID: 27878192
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure and self-diffusivity of mixed-cation electrolytes between neutral and charged graphene sheets.
    Rezlerová E; Moučka F; Předota M; Lísal M
    J Chem Phys; 2024 Mar; 160(9):. PubMed ID: 38426518
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanoconfinement-Enforced Ion Correlation and Nanofluidic Ion Machinery.
    Zhou K; Xu Z
    Nano Lett; 2020 Nov; 20(11):8392-8398. PubMed ID: 33026226
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multifunctional graphene heterogeneous nanochannel with voltage-tunable ion selectivity.
    Su S; Zhang Y; Peng S; Guo L; Liu Y; Fu E; Yao H; Du J; Du G; Xue J
    Nat Commun; 2022 Aug; 13(1):4894. PubMed ID: 35985996
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ion Diffusion through Nanocellulose Membranes: Molecular Dynamics Study.
    Garg M; Zozoulenko I
    ACS Appl Bio Mater; 2021 Dec; 4(12):8301-8308. PubMed ID: 35005924
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Confined Structures and Selective Mass Transport of Organic Liquids in Graphene Nanochannels.
    Jiao S; Zhou K; Wu M; Li C; Cao X; Zhang L; Xu Z
    ACS Appl Mater Interfaces; 2018 Oct; 10(43):37014-37022. PubMed ID: 30286295
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unraveling the mechanism of selective ion transport in hydrophobic subnanometer channels.
    Li H; Francisco JS; Zeng XC
    Proc Natl Acad Sci U S A; 2015 Sep; 112(35):10851-6. PubMed ID: 26283377
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lithium ion-selective membrane with 2D subnanometer channels.
    Razmjou A; Eshaghi G; Orooji Y; Hosseini E; Korayem AH; Mohagheghian F; Boroumand Y; Noorbakhsh A; Asadnia M; Chen V
    Water Res; 2019 Aug; 159():313-323. PubMed ID: 31102860
    [TBL] [Abstract][Full Text] [Related]  

  • 15.
    Lu C; Hu C; Ritt CL; Hua X; Sun J; Xia H; Liu Y; Li DW; Ma B; Elimelech M; Qu J
    J Am Chem Soc; 2021 Sep; 143(35):14242-14252. PubMed ID: 34431669
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preferential solvation, ion pairing, and dynamics of concentrated aqueous solutions of divalent metal nitrate salts.
    Yadav S; Chandra A
    J Chem Phys; 2017 Dec; 147(24):244503. PubMed ID: 29289137
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering highly efficient Li
    Li S; Li M; Chen L; Yang J; Wang Z; Yang F; He L; Li X
    J Colloid Interface Sci; 2022 Jun; 615():674-684. PubMed ID: 35158198
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular simulation study of temperature effect on ionic hydration in carbon nanotubes.
    Shao Q; Huang L; Zhou J; Lu L; Zhang L; Lu X; Jiang S; Gubbins KE; Shen W
    Phys Chem Chem Phys; 2008 Apr; 10(14):1896-906. PubMed ID: 18368182
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ion sieving in graphene oxide membranes via cationic control of interlayer spacing.
    Chen L; Shi G; Shen J; Peng B; Zhang B; Wang Y; Bian F; Wang J; Li D; Qian Z; Xu G; Liu G; Zeng J; Zhang L; Yang Y; Zhou G; Wu M; Jin W; Li J; Fang H
    Nature; 2017 Oct; 550(7676):380-383. PubMed ID: 28992630
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Scalable Graphene-Based Membranes for Ionic Sieving with Ultrahigh Charge Selectivity.
    Hong S; Constans C; Surmani Martins MV; Seow YC; Guevara Carrió JA; Garaj S
    Nano Lett; 2017 Feb; 17(2):728-732. PubMed ID: 28005372
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.