BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 30059221)

  • 1. Screening Priority Factors Determining and Predicting the Reproductive Toxicity of Various Nanoparticles.
    Ban Z; Zhou Q; Sun A; Mu L; Hu X
    Environ Sci Technol; 2018 Sep; 52(17):9666-9676. PubMed ID: 30059221
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting nanotoxicity by an integrated machine learning and metabolomics approach.
    Peng T; Wei C; Yu F; Xu J; Zhou Q; Shi T; Hu X
    Environ Pollut; 2020 Dec; 267():115434. PubMed ID: 32841907
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Safety assessment of cerium oxide nanoparticles: combined repeated-dose toxicity with reproductive/developmental toxicity screening and biodistribution in rats.
    Lee J; Jeong JS; Kim SY; Lee SJ; Shin YJ; Im WJ; Kim SH; Park K; Jeong EJ; Nam SY; Yu WJ
    Nanotoxicology; 2020 Jun; 14(5):696-710. PubMed ID: 32301357
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toxicity-based toxicokinetic/toxicodynamic assessment of bioaccumulation and nanotoxicity of zerovalent iron nanoparticles in
    Yang YF; Lin YJ; Liao CM
    Int J Nanomedicine; 2017; 12():4607-4621. PubMed ID: 28721038
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence-Based Prediction of Cellular Toxicity for Amorphous Silica Nanoparticles.
    Martin ; Watanabe R; Hashimoto K; Higashisaka K; Haga Y; Tsutsumi Y; Mizuguchi K
    ACS Nano; 2023 Jun; 17(11):9987-9999. PubMed ID: 37254442
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Short- and Long-Term Effects of Prenatal Exposure to Iron Oxide Nanoparticles: Influence of Surface Charge and Dose on Developmental and Reproductive Toxicity.
    Di Bona KR; Xu Y; Gray M; Fair D; Hayles H; Milad L; Montes A; Sherwood J; Bao Y; Rasco JF
    Int J Mol Sci; 2015 Dec; 16(12):30251-68. PubMed ID: 26694381
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Weight-of-evidence process for assessing human health risk of mixture of metal oxide nanoparticles and corresponding ions in aquatic matrices.
    Parsai T; Kumar A
    Chemosphere; 2021 Jan; 263():128289. PubMed ID: 33297232
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The heritable effects of nanotoxicity.
    Tortiglione C
    Nanomedicine (Lond); 2014 Dec; 9(18):2829-41. PubMed ID: 25688411
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Machine learning prediction of nanoparticle in vitro toxicity: A comparative study of classifiers and ensemble-classifiers using the Copeland Index.
    Furxhi I; Murphy F; Mullins M; Poland CA
    Toxicol Lett; 2019 Sep; 312():157-166. PubMed ID: 31102714
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ovarian toxicity of nanoparticles.
    Santacruz-Márquez R; González-De Los Santos M; Hernández-Ochoa I
    Reprod Toxicol; 2021 Aug; 103():79-95. PubMed ID: 34098047
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dependence of Nanoparticle Toxicity on Their Physical and Chemical Properties.
    Sukhanova A; Bozrova S; Sokolov P; Berestovoy M; Karaulov A; Nabiev I
    Nanoscale Res Lett; 2018 Feb; 13(1):44. PubMed ID: 29417375
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of Nanotoxicity with Integrated Omics and Mechanobiology.
    Shin TH; Nithiyanandam S; Lee DY; Kwon DH; Hwang JS; Kim SG; Jang YE; Basith S; Park S; Mo JS; Lee G
    Nanomaterials (Basel); 2021 Sep; 11(9):. PubMed ID: 34578701
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabricated nanoparticles: current status and potential phytotoxic threats.
    Yadav T; Mungray AA; Mungray AK
    Rev Environ Contam Toxicol; 2014; 230():83-110. PubMed ID: 24609519
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Silica-coated magnetic-nanoparticle-induced cytotoxicity is reduced in microglia by glutathione and citrate identified using integrated omics.
    Shin TH; Manavalan B; Lee DY; Basith S; Seo C; Paik MJ; Kim SW; Seo H; Lee JY; Kim JY; Kim AY; Chung JM; Baik EJ; Kang SH; Choi DK; Kang Y; Mouradian MM; Lee G
    Part Fibre Toxicol; 2021 Nov; 18(1):42. PubMed ID: 34819099
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Particle-specific toxic effects of differently shaped zinc oxide nanoparticles to zebrafish embryos (Danio rerio).
    Hua J; Vijver MG; Richardson MK; Ahmad F; Peijnenburg WJ
    Environ Toxicol Chem; 2014 Dec; 33(12):2859-68. PubMed ID: 25244315
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Zinc oxide nanoparticles interfere with zinc ion homeostasis to cause cytotoxicity.
    Kao YY; Chen YC; Cheng TJ; Chiung YM; Liu PS
    Toxicol Sci; 2012 Feb; 125(2):462-72. PubMed ID: 22112499
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physicochemical transformation and algal toxicity of engineered nanoparticles in surface water samples.
    Zhang L; Li J; Yang K; Liu J; Lin D
    Environ Pollut; 2016 Apr; 211():132-40. PubMed ID: 26745398
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Limit-test toxicity screening of selected inorganic nanoparticles to the earthworm Eisenia fetida.
    Heckmann LH; Hovgaard MB; Sutherland DS; Autrup H; Besenbacher F; Scott-Fordsmand JJ
    Ecotoxicology; 2011 Jan; 20(1):226-33. PubMed ID: 21120603
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanoparticles Toxicity in Fish Models.
    Cazenave J; Ale A; Bacchetta C; Rossi AS
    Curr Pharm Des; 2019; 25(37):3927-3942. PubMed ID: 31512995
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predictive toxicology of cobalt ferrite nanoparticles: comparative in-vitro study of different cellular models using methods of knowledge discovery from data.
    Horev-Azaria L; Baldi G; Beno D; Bonacchi D; Golla-Schindler U; Kirkpatrick JC; Kolle S; Landsiedel R; Maimon O; Marche PN; Ponti J; Romano R; Rossi F; Sommer D; Uboldi C; Unger RE; Villiers C; Korenstein R
    Part Fibre Toxicol; 2013 Jul; 10():32. PubMed ID: 23895432
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.