BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 30059297)

  • 21. Whole-Breast Ultrasound for Breast Screening and Archiving.
    Huang CS; Yang YW; Chen RT; Lo CM; Lo C; Cheng CF; Lee CS; Chang RF
    Ultrasound Med Biol; 2017 May; 43(5):926-933. PubMed ID: 28283326
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Segmentation of malignant lesions in 3D breast ultrasound using a depth-dependent model.
    Tan T; Gubern-Mérida A; Borelli C; Manniesing R; van Zelst J; Wang L; Zhang W; Platel B; Mann RM; Karssemeijer N
    Med Phys; 2016 Jul; 43(7):4074. PubMed ID: 27370126
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Breast Density Analysis with Automated Whole-Breast Ultrasound: Comparison with 3-D Magnetic Resonance Imaging.
    Chen JH; Lee YW; Chan SW; Yeh DC; Chang RF
    Ultrasound Med Biol; 2016 May; 42(5):1211-20. PubMed ID: 26831342
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Validation of radiologists' findings by computer-aided detection (CAD) software in breast cancer detection with automated 3D breast ultrasound: a concept study in implementation of artificial intelligence software.
    van Zelst JC; Tan T; Mann RM; Karssemeijer N
    Acta Radiol; 2020 Mar; 61(3):312-320. PubMed ID: 31324132
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Two-stage CNNs for computerized BI-RADS categorization in breast ultrasound images.
    Huang Y; Han L; Dou H; Luo H; Yuan Z; Liu Q; Zhang J; Yin G
    Biomed Eng Online; 2019 Jan; 18(1):8. PubMed ID: 30678680
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fully Automated Convolutional Neural Network Method for Quantification of Breast MRI Fibroglandular Tissue and Background Parenchymal Enhancement.
    Ha R; Chang P; Mema E; Mutasa S; Karcich J; Wynn RT; Liu MZ; Jambawalikar S
    J Digit Imaging; 2019 Feb; 32(1):141-147. PubMed ID: 30076489
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Automated Breast Ultrasound Lesions Detection Using Convolutional Neural Networks.
    Yap MH; Pons G; Marti J; Ganau S; Sentis M; Zwiggelaar R; Davison AK; Marti R; Moi Hoon Yap ; Pons G; Marti J; Ganau S; Sentis M; Zwiggelaar R; Davison AK; Marti R
    IEEE J Biomed Health Inform; 2018 Jul; 22(4):1218-1226. PubMed ID: 28796627
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ultrasonic Diagnosis of Breast Nodules Using Modified Faster R-CNN.
    Zhang Z; Zhang X; Lin X; Dong L; Zhang S; Zhang X; Sun D; Yuan K
    Ultrason Imaging; 2019 Nov; 41(6):353-367. PubMed ID: 31615352
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mass Segmentation in Automated 3-D Breast Ultrasound Using Adaptive Region Growing and Supervised Edge-Based Deformable Model.
    Kozegar E; Soryani M; Behnam H; Salamati M; Tan T
    IEEE Trans Med Imaging; 2018 Apr; 37(4):918-928. PubMed ID: 29610071
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Lesion Segmentation in Automated 3D Breast Ultrasound: Volumetric Analysis.
    Agarwal R; Diaz O; Lladó X; Gubern-Mérida A; Vilanova JC; Martí R
    Ultrason Imaging; 2018 Mar; 40(2):97-112. PubMed ID: 29182056
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Interpretation of automated breast ultrasound (ABUS) with and without knowledge of mammography: a reader performance study.
    Skaane P; Gullien R; Eben EB; Sandhaug M; Schulz-Wendtland R; Stoeblen F
    Acta Radiol; 2015 Apr; 56(4):404-12. PubMed ID: 24682405
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Breast tumor segmentation in 3D automatic breast ultrasound using Mask scoring R-CNN.
    Lei Y; He X; Yao J; Wang T; Wang L; Li W; Curran WJ; Liu T; Xu D; Yang X
    Med Phys; 2021 Jan; 48(1):204-214. PubMed ID: 33128230
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Three-dimensional automated breast ultrasound: Technical aspects and first results.
    Vourtsis A
    Diagn Interv Imaging; 2019 Oct; 100(10):579-592. PubMed ID: 30962169
    [TBL] [Abstract][Full Text] [Related]  

  • 34. New one-step model of breast tumor locating based on deep learning.
    Tao C; Chen K; Han L; Peng Y; Li C; Hua Z; Lin J
    J Xray Sci Technol; 2019; 27(5):839-856. PubMed ID: 31306148
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Breast cancer diagnosis using three-dimensional ultrasound and pixel relation analysis.
    Chen WM; Chang RF; Moon WK; Chen DR
    Ultrasound Med Biol; 2003 Jul; 29(7):1027-35. PubMed ID: 12878249
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Chestwall segmentation in 3D breast ultrasound using a deformable volume model.
    Huisman H; Karssemeijer N
    Inf Process Med Imaging; 2007; 20():245-56. PubMed ID: 17633704
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Interpretation Time Using a Concurrent-Read Computer-Aided Detection System for Automated Breast Ultrasound in Breast Cancer Screening of Women With Dense Breast Tissue.
    Jiang Y; Inciardi MF; Edwards AV; Papaioannou J
    AJR Am J Roentgenol; 2018 Aug; 211(2):452-461. PubMed ID: 29792747
    [TBL] [Abstract][Full Text] [Related]  

  • 38. 3-D breast nodule detection on automated breast ultrasound using faster region-based convolutional neural networks and U-Net.
    Oh K; Lee SE; Kim EK
    Sci Rep; 2023 Dec; 13(1):22625. PubMed ID: 38114666
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Reducing motion artifacts in 3-D breast ultrasound using non-linear registration.
    Boehler T; Peitgen HO
    Med Image Comput Comput Assist Interv; 2008; 11(Pt 2):998-1005. PubMed ID: 18982702
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Improved breast cancer detection in asymptomatic women using 3D-automated breast ultrasound in mammographically dense breasts.
    Giuliano V; Giuliano C
    Clin Imaging; 2013; 37(3):480-6. PubMed ID: 23116728
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.