These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 30059563)
1. The Influence of Fatty Acids on Cold Hardiness of Eogystia hippophaecolus Larvae. Tian B; Feng Y; Ren L; Wang T; Zong S Cryo Letters; 2018; 39(3):166-176. PubMed ID: 30059563 [TBL] [Abstract][Full Text] [Related]
2. Supercooling capacity and cryoprotectants of overwintering larvae from different populations of Holcocerus hippophaecolus. Tian B; Xu L; Zhang M; Feng Y; Zong S Cryo Letters; 2016; 37(3):206-17. PubMed ID: 27393957 [TBL] [Abstract][Full Text] [Related]
3. Changes of cold hardiness, supercooling capacity, and major cryoprotectants in overwintering larvae of Chilo suppressalis (Lepidoptera: Pyralidae). Atapour M; Moharramipour S Environ Entomol; 2009 Feb; 38(1):260-5. PubMed ID: 19791622 [TBL] [Abstract][Full Text] [Related]
4. Overwintering biology and limits of cold tolerance in larvae of pistachio twig borer, Kermania pistaciella. Mollaei M; Izadi H; Šimek P; Koštál V Bull Entomol Res; 2016 Aug; 106(4):538-45. PubMed ID: 27063868 [TBL] [Abstract][Full Text] [Related]
5. Differential transcriptome analysis reveals genes related to cold tolerance in seabuckthorn carpenter moth, Eogystia hippophaecolus. Cui M; Hu P; Wang T; Tao J; Zong S PLoS One; 2017; 12(11):e0187105. PubMed ID: 29131867 [TBL] [Abstract][Full Text] [Related]
6. Cold hardiness and supercooling capacity in the overwintering larvae of the codling moth, Cydia pomonella. Khani A; Moharramipour S J Insect Sci; 2010; 10():83. PubMed ID: 20673068 [TBL] [Abstract][Full Text] [Related]
7. Factors Influencing Cold Hardiness during Overwintering of Streltzoviella insularis (Lepidoptera: Cossidae). Pei J; Li C; Ren L; Zong S J Econ Entomol; 2020 Jun; 113(3):1254-1261. PubMed ID: 32161958 [TBL] [Abstract][Full Text] [Related]
8. Overwintering strategy and mechanisms of cold tolerance in the codling moth (Cydia pomonella). Rozsypal J; Koštál V; Zahradníčková H; Šimek P PLoS One; 2013; 8(4):e61745. PubMed ID: 23613923 [TBL] [Abstract][Full Text] [Related]
9. Effects of seasonal acclimation on cold tolerance and biochemical status of the carob moth, Ectomyelois ceratoniae Zeller, last instar larvae. Heydari M; Izadi H Bull Entomol Res; 2014 Oct; 104(5):592-600. PubMed ID: 24819226 [TBL] [Abstract][Full Text] [Related]
10. Cold Hardiness of Overwintering Larvae of Sphenoptera sp. (Coleoptera: Buprestidae) in Western China. Feng Y; Zhang L; Li W; Yang X; Zong S J Econ Entomol; 2018 Feb; 111(1):247-251. PubMed ID: 29182780 [TBL] [Abstract][Full Text] [Related]
11. Physiology of Hibernating Larvae of the Pistachio Twig Borer, Kermania pistaciella Amsel (Lepidoptera: Tineidae), Collected from Akbari Cultivar of Pistacia vera L. Mollaei M; Izadi H; Moharramipour S; Behroozi Moghadam E Neotrop Entomol; 2017 Feb; 46(1):58-65. PubMed ID: 27830538 [TBL] [Abstract][Full Text] [Related]
12. Effect of temperature and host tree on cold hardiness of hemlock looper eggs along a latitudinal gradient. Rochefort S; Berthiaume R; Hébert C; Charest M; Bauce E J Insect Physiol; 2011 Jun; 57(6):751-9. PubMed ID: 21356214 [TBL] [Abstract][Full Text] [Related]
13. Climate change impacts on the potential distribution of Eogystia hippophaecolus in China. Li X; Ge X; Chen L; Zhang L; Wang T; Zong S Pest Manag Sci; 2019 Jan; 75(1):215-223. PubMed ID: 29808532 [TBL] [Abstract][Full Text] [Related]
14. [Dynamic changes of cold-resistant substances of overwintering Chilo suppressalis (Walker) larvae]. Qiang CK; Du YZ; Yu LY; Cui YD; Lu MX; Zheng FS Ying Yong Sheng Tai Xue Bao; 2008 Mar; 19(3):599-605. PubMed ID: 18533532 [TBL] [Abstract][Full Text] [Related]
15. [Effects of different host plants on the cold-resistant substances in overwintering larvae of Carposina sasakii Matsumura (Lepidoptera: Carposinidae)]. Wang P; Yu Y; Xu YY; Li LL; Zhang AS; Men XY; Zhang SC; Zhou XH Ying Yong Sheng Tai Xue Bao; 2014 May; 25(5):1513-7. PubMed ID: 25129956 [TBL] [Abstract][Full Text] [Related]
16. Relationship between supercooling point and mortality at low temperatures in Indianmeal moth (Lepidoptera: Pyralidae). Carrillo MA; Cannon CA; Wilcke WF; Morey RV; Kaliyan N; Hutchison WD J Econ Entomol; 2005 Apr; 98(2):618-25. PubMed ID: 15889756 [TBL] [Abstract][Full Text] [Related]
17. Seasonal changes in the composition of storage and membrane lipids in overwintering larvae of the codling moth, Cydia pomonella. Rozsypal J; Koštál V; Berková P; Zahradníčková H; Simek P J Therm Biol; 2014 Oct; 45():124-33. PubMed ID: 25436961 [TBL] [Abstract][Full Text] [Related]
18. Seasonal and geographical variation in diapause and cold hardiness of the Asian corn borer, Ostrinia furnacalis. Xie HC; Li DS; Zhang HG; Mason CE; Wang ZY; Lu X; Cai WZ; He KL Insect Sci; 2015 Aug; 22(4):578-86. PubMed ID: 24802514 [TBL] [Abstract][Full Text] [Related]
19. Seasonal change of cold hardiness in the codling moth, Cydia pomonella (Lepidoptera: Tortricidae). Khani A; Moharramipour S Pak J Biol Sci; 2007 Aug; 10(15):2591-4. PubMed ID: 19070137 [TBL] [Abstract][Full Text] [Related]
20. Low-temperature derived temporal change in the vertical distribution of Sesamia inferens larvae in winter, with links to its latitudinal distribution. Huang J; Li G; Lei H; Fan C; Tian C; Chen Q; Huang B; Li H; Lu Z; Feng H PLoS One; 2020; 15(7):e0236174. PubMed ID: 32722719 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]