These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

329 related articles for article (PubMed ID: 30059616)

  • 41. Transient Micromotors That Disappear When No Longer Needed.
    Chen C; Karshalev E; Li J; Soto F; Castillo R; Campos I; Mou F; Guan J; Wang J
    ACS Nano; 2016 Nov; 10(11):10389-10396. PubMed ID: 27783486
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Janus Micromotors for Photophoretic Motion and Photon Upconversion Applications Using a Single Near-Infrared Wavelength.
    Mena-Giraldo P; Kaur M; Maurizio SL; Mandl GA; Capobianco JA
    ACS Appl Mater Interfaces; 2024 Jan; 16(3):4249-4260. PubMed ID: 38197400
    [TBL] [Abstract][Full Text] [Related]  

  • 43. How to Make a Fast, Efficient Bubble-Driven Micromotor: A Mechanical View.
    Liu L; Bai T; Chi Q; Wang Z; Xu S; Liu Q; Wang Q
    Micromachines (Basel); 2017 Aug; 8(9):. PubMed ID: 30400455
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Two Forces Are Better than One: Combining Chemical and Acoustic Propulsion for Enhanced Micromotor Functionality.
    Ren L; Wang W; Mallouk TE
    Acc Chem Res; 2018 Sep; 51(9):1948-1956. PubMed ID: 30079719
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Enzyme Purification Improves the Enzyme Loading, Self-Propulsion, and Endurance Performance of Micromotors.
    Valles M; Pujals S; Albertazzi L; Sánchez S
    ACS Nano; 2022 Apr; 16(4):5615-5626. PubMed ID: 35341250
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Influence of Enzyme Quantity and Distribution on the Self-Propulsion of Non-Janus Urease-Powered Micromotors.
    Patiño T; Feiner-Gracia N; Arqué X; Miguel-López A; Jannasch A; Stumpp T; Schäffer E; Albertazzi L; Sánchez S
    J Am Chem Soc; 2018 Jun; 140(25):7896-7903. PubMed ID: 29786426
    [TBL] [Abstract][Full Text] [Related]  

  • 47. ZnO/ZnO
    Pourrahimi AM; Villa K; Ying Y; Sofer Z; Pumera M
    ACS Appl Mater Interfaces; 2018 Dec; 10(49):42688-42697. PubMed ID: 30500156
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Applications of Nano/Micromotors for Treatment and Diagnosis in Biological Lumens.
    Huang S; Gao Y; Lv Y; Wang Y; Cao Y; Zhao W; Zuo D; Mu H; Hua Y
    Micromachines (Basel); 2022 Oct; 13(10):. PubMed ID: 36296133
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Shape-Controlled Fabrication of the Polymer-Based Micromotor Based on the Polydimethylsiloxane Template.
    Su M; Liu M; Liu L; Sun Y; Li M; Wang D; Zhang H; Dong B
    Langmuir; 2015 Nov; 31(43):11914-20. PubMed ID: 26471466
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Comprehensive Understanding of Self-Propelled Janus Pt/Fe
    Kang E; Lee W; Lee H
    J Phys Chem Lett; 2023 Nov; 14(44):9811-9818. PubMed ID: 37889127
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Highly Efficient Light-Driven TiO2-Au Janus Micromotors.
    Dong R; Zhang Q; Gao W; Pei A; Ren B
    ACS Nano; 2016 Jan; 10(1):839-44. PubMed ID: 26592971
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A Macrophage-Magnesium Hybrid Biomotor: Fabrication and Characterization.
    Zhang F; Mundaca-Uribe R; Gong H; Esteban-Fernández de Ávila B; Beltrán-Gastélum M; Karshalev E; Nourhani A; Tong Y; Nguyen B; Gallot M; Zhang Y; Zhang L; Wang J
    Adv Mater; 2019 Jul; 31(27):e1901828. PubMed ID: 31070278
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Dye-Enhanced Self-Electrophoretic Propulsion of Light-Driven TiO
    Wu Y; Dong R; Zhang Q; Ren B
    Nanomicro Lett; 2017; 9(3):30. PubMed ID: 30393725
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Superfast Active Droplets as Micromotors for Locomotion of Passive Droplets and Intensification of Mixing.
    Kichatov B; Korshunov A; Sudakov V; Gubernov V; Golubkov A; Kiverin A
    ACS Appl Mater Interfaces; 2021 Aug; 13(32):38877-38885. PubMed ID: 34351762
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Light-Driven Au-WO
    Zhang Q; Dong R; Wu Y; Gao W; He Z; Ren B
    ACS Appl Mater Interfaces; 2017 Feb; 9(5):4674-4683. PubMed ID: 28097861
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Bioinspired Helical Micromotors as Dynamic Cell Microcarriers.
    Yu Y; Guo J; Wang Y; Shao C; Wang Y; Zhao Y
    ACS Appl Mater Interfaces; 2020 Apr; 12(14):16097-16103. PubMed ID: 32181642
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Switching Propulsion Mechanisms of Tubular Catalytic Micromotors.
    Wrede P; Medina-Sánchez M; Fomin VM; Schmidt OG
    Small; 2021 Mar; 17(12):e2006449. PubMed ID: 33615690
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A Microstirring Pill Enhances Bioavailability of Orally Administered Drugs.
    Mundaca-Uribe R; Karshalev E; Esteban-Fernández de Ávila B; Wei X; Nguyen B; Litvan I; Fang RH; Zhang L; Wang J
    Adv Sci (Weinh); 2021 Jun; 8(12):2100389. PubMed ID: 34194949
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Micromotor That Carries Its Own Fuel Internally.
    Dong RY; Zhang Y; Lou K; Granick S
    Langmuir; 2020 Jul; 36(26):7701-7705. PubMed ID: 32571028
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Autonomous motion and temperature-controlled drug delivery of Mg/Pt-poly(N-isopropylacrylamide) Janus micromotors driven by simulated body fluid and blood plasma.
    Mou F; Chen C; Zhong Q; Yin Y; Ma H; Guan J
    ACS Appl Mater Interfaces; 2014 Jun; 6(12):9897-903. PubMed ID: 24869766
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.