These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

323 related articles for article (PubMed ID: 30059616)

  • 61. A drug co-delivery platform made of magnesium-based micromotors enhances combination therapy for hepatoma carcinoma cells.
    Song Q; Liu Y; Ding X; Feng M; Li J; Liu W; Wang B; Gu Z
    Nanoscale; 2023 Oct; 15(38):15573-15582. PubMed ID: 37641947
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Ionic Species Affect the Self-Propulsion of Urease-Powered Micromotors.
    Arqué X; Andrés X; Mestre R; Ciraulo B; Ortega Arroyo J; Quidant R; Patiño T; Sánchez S
    Research (Wash D C); 2020; 2020():2424972. PubMed ID: 32803169
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Visible Light-Driven Micromotor with Incident-Angle-Controlled Motion and Dynamic Collective Behavior.
    Sun Y; Jiang J; Zhang G; Yuan N; Zhang H; Song B; Dong B
    Langmuir; 2021 Jan; 37(1):180-187. PubMed ID: 33390019
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Sperm Micromotors for Cargo Delivery through Flowing Blood.
    Xu H; Medina-Sánchez M; Maitz MF; Werner C; Schmidt OG
    ACS Nano; 2020 Mar; 14(3):2982-2993. PubMed ID: 32096976
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Preparation of acid-driven magnetically imprinted micromotors and selective loading of phycocyanin.
    Yang G; Liu J; Zhang Z; Yuan L; Tian H; Yang X
    J Mater Chem B; 2023 Nov; 11(44):10728-10737. PubMed ID: 37921104
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Isotropic Hedgehog-Shaped-TiO
    Jiang H; He X; Ma Y; Fu B; Xu X; Subramanian B; Hu C
    ACS Appl Mater Interfaces; 2021 Feb; 13(4):5406-5417. PubMed ID: 33475348
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Analyte Sensing with Catalytic Micromotors.
    Popescu MN; Gáspár S
    Biosensors (Basel); 2022 Dec; 13(1):. PubMed ID: 36671880
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Catalytic Propulsion and Magnetic Steering of Soft, Patchy Microcapsules: Ability to Pick-Up and Drop-Off Microscale Cargo.
    Lu AX; Liu Y; Oh H; Gargava A; Kendall E; Nie Z; DeVoe DL; Raghavan SR
    ACS Appl Mater Interfaces; 2016 Jun; 8(24):15676-83. PubMed ID: 27295420
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Nanoparticle mediated micromotor motion.
    Liu M; Liu L; Gao W; Su M; Ge Y; Shi L; Zhang H; Dong B; Li CY
    Nanoscale; 2015 Mar; 7(11):4949-55. PubMed ID: 25689965
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Flexible fabrication of lipophilic-hydrophilic micromotors by off-chip photopolymerization of three-phase immiscible flow induced Janus droplet templates.
    Zhang K; Ren Y; Jiang T; Jiang H
    Anal Chim Acta; 2021 Oct; 1182():338955. PubMed ID: 34602209
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Chemical/Light-Powered Hybrid Micromotors with "On-the-Fly" Optical Brakes.
    Chen C; Tang S; Teymourian H; Karshalev E; Zhang F; Li J; Mou F; Liang Y; Guan J; Wang J
    Angew Chem Int Ed Engl; 2018 Jul; 57(27):8110-8114. PubMed ID: 29737003
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Multi-Light-Responsive Quantum Dot Sensitized Hybrid Micromotors with Dual-Mode Propulsion.
    María Hormigos R; Jurado Sánchez B; Escarpa A
    Angew Chem Int Ed Engl; 2019 Mar; 58(10):3128-3132. PubMed ID: 30521672
    [TBL] [Abstract][Full Text] [Related]  

  • 73. pH-Responsive swimming behavior of light-powered rod-shaped micromotors.
    Debata S; Panda SK; Trivedi S; Uspal W; Singh DP
    Nanoscale; 2023 Nov; 15(43):17534-17543. PubMed ID: 37870073
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Enhanced and Robust Directional Propulsion of Light-Activated Janus Micromotors by Magnetic Spinning and the Magnus Effect.
    Li J; He X; Jiang H; Xing Y; Fu B; Hu C
    ACS Appl Mater Interfaces; 2022 Aug; 14(31):36027-36037. PubMed ID: 35916408
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Buoyant force-induced continuous floating and sinking of Janus micromotors.
    Wu M; Koizumi Y; Nishiyama H; Tomita I; Inagi S
    RSC Adv; 2018 Sep; 8(58):33331-33337. PubMed ID: 35548146
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Nano/Micromotors for Diagnosis and Therapy of Cancer and Infectious Diseases.
    Yuan K; Jiang Z; Jurado-Sánchez B; Escarpa A
    Chemistry; 2020 Feb; 26(11):2309-2326. PubMed ID: 31682040
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Bubble-Propelled Janus Gallium/Zinc Micromotors for the Active Treatment of Bacterial Infections.
    Lin Z; Gao C; Wang D; He Q
    Angew Chem Int Ed Engl; 2021 Apr; 60(16):8750-8754. PubMed ID: 33481280
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Micromotor-based energy generation.
    Singh VV; Soto F; Kaufmann K; Wang J
    Angew Chem Int Ed Engl; 2015 Jun; 54(23):6896-9. PubMed ID: 25906739
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Geometric asymmetry driven Janus micromotors.
    Zhao G; Pumera M
    Nanoscale; 2014 Oct; 6(19):11177-80. PubMed ID: 25122607
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Hydrogel micromotors with catalyst-containing liquid core and shell.
    Zhu H; Nawar S; Werner JG; Liu J; Huang G; Mei Y; Weitz DA; Solovev AA
    J Phys Condens Matter; 2019 May; 31(21):214004. PubMed ID: 30777936
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.