These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 30059633)

  • 61. Coupling of a finite element human head model with a lumped parameter Hybrid III dummy model: preliminary results.
    Ruan JS; Prasad P
    J Neurotrauma; 1995 Aug; 12(4):725-34. PubMed ID: 8683624
    [TBL] [Abstract][Full Text] [Related]  

  • 62. On the mechanical behaviour of PEEK and HA cranial implants under impact loading.
    Garcia-Gonzalez D; Jayamohan J; Sotiropoulos SN; Yoon SH; Cook J; Siviour CR; Arias A; Jérusalem A
    J Mech Behav Biomed Mater; 2017 May; 69():342-354. PubMed ID: 28160738
    [TBL] [Abstract][Full Text] [Related]  

  • 63. CSF pressure-volume dynamics in neurosurgical patients: a preliminary evaluation in six patients.
    Sullivan HG; Miller JD; Griffith RL; Becker DP
    Surg Neurol; 1978 Jan; 9(1):47-54. PubMed ID: 622681
    [No Abstract]   [Full Text] [Related]  

  • 64. Cavitation threshold evaluation of porcine cerebrospinal fluid using a Polymeric Split Hopkinson Pressure Bar-Confinement chamber apparatus.
    Bustamante MC; Cronin DS
    J Mech Behav Biomed Mater; 2019 Dec; 100():103400. PubMed ID: 31476553
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Classification of pulse waveform of cerebral spinal fluid during intracranial pressure monitoring.
    Li JR; He WW; Yao JJ; Wen XL
    Chin Med J (Engl); 1993 Nov; 106(11):809-13. PubMed ID: 8143491
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Evaluation of possible head injuries ensuing a cricket ball impact.
    Mohotti D; Fernando PLN; Zaghloul A
    Comput Methods Programs Biomed; 2018 May; 158():193-205. PubMed ID: 29544785
    [TBL] [Abstract][Full Text] [Related]  

  • 67. New Concepts of Cerebrospinal Fluid Physiology and Development of Hydrocephalus.
    Orešković D; Radoš M; Klarica M
    Pediatr Neurosurg; 2017; 52(6):417-425. PubMed ID: 27997915
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Simulation of Brain Response to Noncontact Impacts Using Coupled Eulerian-Lagrangian Method.
    Na M; Beavers TJ; Chandra A; Bentil SA
    J Biomech Eng; 2020 May; 142(5):. PubMed ID: 31574143
    [TBL] [Abstract][Full Text] [Related]  

  • 69. The validation and application of a finite element human head model for frontal skull fracture analysis.
    Asgharpour Z; Baumgartner D; Willinger R; Graw M; Peldschus S
    J Mech Behav Biomed Mater; 2014 May; 33():16-23. PubMed ID: 23689027
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Finite element analysis of periventricular lucency in hydrocephalus: extravasation or transependymal CSF absorption?
    Kim H; Jeong EJ; Park DH; Czosnyka Z; Yoon BC; Kim K; Czosnyka M; Kim DJ
    J Neurosurg; 2016 Feb; 124(2):334-41. PubMed ID: 26274984
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Pulsatile cerebrospinal fluid dynamics in the human brain.
    Linninger AA; Tsakiris C; Zhu DC; Xenos M; Roycewicz P; Danziger Z; Penn R
    IEEE Trans Biomed Eng; 2005 Apr; 52(4):557-65. PubMed ID: 15825857
    [TBL] [Abstract][Full Text] [Related]  

  • 72. The Role of Fluid Dynamics in Distributing Ankle Stresses in Anatomic and Injured States.
    Hamid KS; Scott AT; Nwachukwu BU; Danelson KA
    Foot Ankle Int; 2016 Dec; 37(12):1343-1349. PubMed ID: 27530984
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Effects of head size and morphology on dynamic responses to impact loading.
    Wang F; Lee HP; Lu C
    Med Biol Eng Comput; 2007 Aug; 45(8):747-57. PubMed ID: 17634762
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Study of mild traumatic brain injuries using experiments and finite element modeling.
    Lamy M; Baumgartner D; Willinger R; Yoganandan N; Stemper BD
    Ann Adv Automot Med; 2011; 55():125-35. PubMed ID: 22105390
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Pathophysiological and behavioral deficits in developing mice following rotational acceleration-deceleration traumatic brain injury.
    Wang G; Zhang YP; Gao Z; Shields LBE; Li F; Chu T; Lv H; Moriarty T; Xu XM; Yang X; Shields CB; Cai J
    Dis Model Mech; 2018 Jan; 11(1):. PubMed ID: 29208736
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Relation between diffuse axonal injury and internal head structures on blunt impact.
    Nishimoto T; Murakami S
    J Biomech Eng; 1998 Feb; 120(1):140-7. PubMed ID: 9675693
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Untangling the Effect of Head Acceleration on Brain Responses to Blast Waves.
    Mao H; Unnikrishnan G; Rakesh V; Reifman J
    J Biomech Eng; 2015 Dec; 137(12):124502. PubMed ID: 26458125
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Resonance of human brain under head acceleration.
    Laksari K; Wu LC; Kurt M; Kuo C; Camarillo DC
    J R Soc Interface; 2015 Jul; 12(108):20150331. PubMed ID: 26063824
    [TBL] [Abstract][Full Text] [Related]  

  • 79. [Changes in the cerebrospinal fluid lactate concentration of children with cranio-cerebral injuries].
    Gaevyĭ OV; Vorob'ev IuV; Artarian AA; Promyslov MSh
    Zh Vopr Neirokhir Im N N Burdenko; 1981; (3):25-9. PubMed ID: 7282197
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Effect of aging on brain injury prediction in rotational head trauma--a parameter study with a rat finite element model.
    Antona-Makoshi J; Eliasson E; Davidsson J; Ejima S; Ono K
    Traffic Inj Prev; 2015; 16 Suppl 1():S91-9. PubMed ID: 26027980
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.