These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 30059734)

  • 1. Hierarchical multiscale Bayesian algorithm for robust MEG/EEG source reconstruction.
    Cai C; Sekihara K; Nagarajan SS
    Neuroimage; 2018 Dec; 183():698-715. PubMed ID: 30059734
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Performance evaluation of the Champagne source reconstruction algorithm on simulated and real M/EEG data.
    Owen JP; Wipf DP; Attias HT; Sekihara K; Nagarajan SS
    Neuroimage; 2012 Mar; 60(1):305-23. PubMed ID: 22209808
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Novel Scanning Algorithm for MEG/EEG imaging using Covariance Partitioning and Noise Learning.
    Cai C; Sekihara K; Nagarajan SS
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():4803-4806. PubMed ID: 31946936
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Empirical Bayes evaluation of fused EEG-MEG source reconstruction: Application to auditory mismatch evoked responses.
    Lecaignard F; Bertrand O; Caclin A; Mattout J
    Neuroimage; 2021 Feb; 226():117468. PubMed ID: 33075561
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Robust estimation of noise for electromagnetic brain imaging with the champagne algorithm.
    Cai C; Hashemi A; Diwakar M; Haufe S; Sekihara K; Nagarajan SS
    Neuroimage; 2021 Jan; 225():117411. PubMed ID: 33039615
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Robust Empirical Bayesian Reconstruction of Distributed Sources for Electromagnetic Brain Imaging.
    Cai C; Diwakar M; Chen D; Sekihara K; Nagarajan SS
    IEEE Trans Med Imaging; 2020 Mar; 39(3):567-577. PubMed ID: 31380750
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A probabilistic algorithm integrating source localization and noise suppression for MEG and EEG data.
    Zumer JM; Attias HT; Sekihara K; Nagarajan SS
    Neuroimage; 2007 Aug; 37(1):102-15. PubMed ID: 17574444
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Empirical Bayesian localization of event-related time-frequency neural activity dynamics.
    Cai C; Hinkley L; Gao Y; Hashemi A; Haufe S; Sekihara K; Nagarajan SS
    Neuroimage; 2022 Sep; 258():119369. PubMed ID: 35700943
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automated model selection in covariance estimation and spatial whitening of MEG and EEG signals.
    Engemann DA; Gramfort A
    Neuroimage; 2015 Mar; 108():328-42. PubMed ID: 25541187
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bayesian Adaptive Beamformer for Robust Electromagnetic Brain Imaging of Correlated Sources in High Spatial Resolution.
    Cai C; Long Y; Ghosh S; Hashemi A; Gao Y; Diwakar M; Haufe S; Sekihara K; Wu W; Nagarajan SS
    IEEE Trans Med Imaging; 2023 Sep; 42(9):2502-2512. PubMed ID: 37028341
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electromagnetic Source Imaging With a Combination of Sparse Bayesian Learning and Deep Neural Network.
    Liang J; Yu ZL; Gu Z; Li Y
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():2338-2348. PubMed ID: 37028383
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hierarchical Bayesian inference for the EEG inverse problem using realistic FE head models: depth localization and source separation for focal primary currents.
    Lucka F; Pursiainen S; Burger M; Wolters CH
    Neuroimage; 2012 Jul; 61(4):1364-82. PubMed ID: 22537599
    [TBL] [Abstract][Full Text] [Related]  

  • 13. EEG/MEG source imaging using fMRI informed time-variant constraints.
    Xu J; Sheng J; Qian T; Luo YJ; Gao JH
    Hum Brain Mapp; 2018 Apr; 39(4):1700-1711. PubMed ID: 29293277
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bayesian Algorithm Based Localization of EEG Recorded Electromagnetic Brain Activity.
    Jatoi MA; Kamel N; Musavi SHA; López JD
    Curr Med Imaging Rev; 2019; 15(2):184-193. PubMed ID: 31975664
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A unified Bayesian framework for MEG/EEG source imaging.
    Wipf D; Nagarajan S
    Neuroimage; 2009 Feb; 44(3):947-66. PubMed ID: 18602278
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A hierarchical Bayesian method to resolve an inverse problem of MEG contaminated with eye movement artifacts.
    Fujiwara Y; Yamashita O; Kawawaki D; Doya K; Kawato M; Toyama K; Sato MA
    Neuroimage; 2009 Apr; 45(2):393-409. PubMed ID: 19150653
    [TBL] [Abstract][Full Text] [Related]  

  • 17. μ-STAR: A novel framework for spatio-temporal M/EEG source imaging optimized by microstates.
    Feng Z; Wang S; Qian L; Xu M; Wu K; Kakkos I; Guan C; Sun Y
    Neuroimage; 2023 Nov; 282():120372. PubMed ID: 37748558
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Algorithmic procedures for Bayesian MEG/EEG source reconstruction in SPM.
    López JD; Litvak V; Espinosa JJ; Friston K; Barnes GR
    Neuroimage; 2014 Jan; 84():476-87. PubMed ID: 24041874
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Estimation of neural dynamics from MEG/EEG cortical current density maps: application to the reconstruction of large-scale cortical synchrony.
    David O; Garnero L; Cosmelli D; Varela FJ
    IEEE Trans Biomed Eng; 2002 Sep; 49(9):975-87. PubMed ID: 12214887
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neuro-current response functions: A unified approach to MEG source analysis under the continuous stimuli paradigm.
    Das P; Brodbeck C; Simon JZ; Babadi B
    Neuroimage; 2020 May; 211():116528. PubMed ID: 31945510
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.