These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 3006035)

  • 81. Light-Driven Proton, Sodium Ion, and Chloride Ion Transfer Mechanisms in Rhodopsins: SAC-CI Study.
    Miyahara T; Nakatsuji H
    J Phys Chem A; 2019 Mar; 123(9):1766-1784. PubMed ID: 30762358
    [TBL] [Abstract][Full Text] [Related]  

  • 82. [Investigation of the effects of dehydration on bacterial rhodopsin by laser resonance Raman spectroscopy].
    Terpugov EL; Chekulaeva LN; Lazarev IuA
    Mol Biol (Mosk); 1982; 16(4):814-20. PubMed ID: 7121464
    [TBL] [Abstract][Full Text] [Related]  

  • 83. The predischarge chromophore in bacteriorhodopsin: a 15N solid-state NMR study of the L photointermediate.
    Hu JG; Sun BQ; Petkova AT; Griffin RG; Herzfeld J
    Biochemistry; 1997 Aug; 36(31):9316-22. PubMed ID: 9235973
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Resonance Raman spectroscopy of 2H-labelled spheroidenes in petroleum ether and in the Rhodobacter sphaeroides reaction centre.
    Kok P; Köhler J; Groenen EJ; Gebhard R; van der Hoef I; Lugtenburg J; Farhoosh R; Frank HA
    Spectrochim Acta A Mol Biomol Spectrosc; 1997 Mar; 53A(3):381-92. PubMed ID: 9177038
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Fourier transform infrared difference spectroscopy of bacteriorhodopsin and its photoproducts.
    Bagley K; Dollinger G; Eisenstein L; Singh AK; Zimányi L
    Proc Natl Acad Sci U S A; 1982 Aug; 79(16):4972-6. PubMed ID: 6956906
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Controlling the pKa of the bacteriorhodopsin Schiff base by use of artificial retinal analogues.
    Sheves M; Albeck A; Friedman N; Ottolenghi M
    Proc Natl Acad Sci U S A; 1986 May; 83(10):3262-6. PubMed ID: 3458179
    [TBL] [Abstract][Full Text] [Related]  

  • 87. A resonance Raman study of octopus bathorhodopsin with deuterium labeled retinal chromophores.
    Deng H; Manor D; Weng G; Rath P; Koutalos Y; Ebrey T; Gebhard R; Lugtenburg J; Tsuda M; Callender RH
    Photochem Photobiol; 1991 Dec; 54(6):1001-7. PubMed ID: 1775525
    [TBL] [Abstract][Full Text] [Related]  

  • 88. High-resolution solid-state 13C-NMR study of carbons C-5 and C-12 of the chromophore of bovine rhodopsin. Evidence for a 6-S-cis conformation with negative-charge perturbation near C-12.
    Mollevanger LC; Kentgens AP; Pardoen JA; Courtin JM; Veeman WS; Lugtenburg J; de Grip WJ
    Eur J Biochem; 1987 Feb; 163(1):9-14. PubMed ID: 3816805
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Resonance Raman spectroscopy of specifically [epsilon-15N]lysine-labeled bacteriorhodopsin.
    Argade PV; Rothschild KJ; Kawamoto AH; Herzfeld J; Herlihy WC
    Proc Natl Acad Sci U S A; 1981 Mar; 78(3):1643-6. PubMed ID: 6785758
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Physiological and structural investigations of bacteriorhodopsin analogs.
    Marcus MA; Lewis A; Crespi H
    Biochem Biophys Res Commun; 1977 Sep; 78(2):669-75. PubMed ID: 907704
    [No Abstract]   [Full Text] [Related]  

  • 91. Quantum dynamics of the femtosecond photoisomerization of retinal in bacteriorhodopsin.
    Ben-Nun M; Molnar F; Lu H; Phillips JC; Martínez TJ; Schulten K
    Faraday Discuss; 1998; (110):447-62; discussion 477-520. PubMed ID: 10822594
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Charge stabilization mechanism in the visual and purple membrane pigments.
    Warshel A
    Proc Natl Acad Sci U S A; 1978 Jun; 75(6):2558-62. PubMed ID: 275826
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Resonance Raman spectroscopy of chemically modified and isotopically labelled purple membranes. I. A critical examination of the carbon-nitrogen vibrational modes.
    Ehrenberg B; Lemley AT; Lewis A; von Zastrow M; Crespi HL
    Biochim Biophys Acta; 1980 Dec; 593(2):441-53. PubMed ID: 7236644
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Specificity of the retinal binding site of bacteriorhodopsin: chemical and stereochemical requirements for the binding of retinol and retinal.
    Schreckenbach T; Walckhoff B; Oesterhelt D
    Biochemistry; 1978 Dec; 17(25):5353-9. PubMed ID: 728405
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Non-isomerizable artificial pigments: implications for the primary light-induced events in bacteriorhodopsin.
    Aharoni A; Hou B; Friedman N; Ottolenghi M; Rousso I; Ruhman S; Sheves M; Ye T; Zhong Q
    Biochemistry (Mosc); 2001 Nov; 66(11):1210-9. PubMed ID: 11743866
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Primary conformation change in bacteriorhodopsin on photoexcitation.
    Yabushita A; Kobayashi T
    Biophys J; 2009 Feb; 96(4):1447-61. PubMed ID: 19217861
    [TBL] [Abstract][Full Text] [Related]  

  • 97. The site of attachment of retinal in bacteriorhodopsin. A resonance Raman study.
    Rothschild KJ; Argade PV; Earnest TN; Huang KS; London E; Liao MJ; Bayley H; Khorana HG; Herzfeld J
    J Biol Chem; 1982 Aug; 257(15):8592-5. PubMed ID: 6807975
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Structure-function studies on bacteriorhodopsin. VIII. Substitutions of the membrane-embedded prolines 50, 91, and 186: the effects are determined by the substituting amino acids.
    Mogi T; Stern LJ; Chao BH; Khorana HG
    J Biol Chem; 1989 Aug; 264(24):14192-6. PubMed ID: 2547786
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Transmembrane location of retinal in bacteriorhodopsin by neutron diffraction.
    Hauss T; Grzesiek S; Otto H; Westerhausen J; Heyn MP
    Biochemistry; 1990 May; 29(20):4904-13. PubMed ID: 2364067
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Primary photophysical and photochemical processes in visual excitation.
    Lewis A
    Biophys Struct Mech; 1977 Jun; 3(2):97-100. PubMed ID: 890060
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.