These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
921 related articles for article (PubMed ID: 3006038)
1. Phosphodiesterase activation by photoexcited rhodopsin is quenched when rhodopsin is phosphorylated and binds the intrinsic 48-kDa protein of rod outer segments. Wilden U; Hall SW; Kühn H Proc Natl Acad Sci U S A; 1986 Mar; 83(5):1174-8. PubMed ID: 3006038 [TBL] [Abstract][Full Text] [Related]
2. Flow of information in the light-triggered cyclic nucleotide cascade of vision. Fung BK; Hurley JB; Stryer L Proc Natl Acad Sci U S A; 1981 Jan; 78(1):152-6. PubMed ID: 6264430 [TBL] [Abstract][Full Text] [Related]
3. Deactivation of photoactivated rhodopsin by rhodopsin-kinase and arrestin. Kühn H; Wilden U J Recept Res; 1987; 7(1-4):283-98. PubMed ID: 3040978 [TBL] [Abstract][Full Text] [Related]
4. Transducin and the cyclic GMP phosphodiesterase: amplifier proteins in vision. Stryer L Cold Spring Harb Symp Quant Biol; 1983; 48 Pt 2():841-52. PubMed ID: 6327179 [TBL] [Abstract][Full Text] [Related]
5. The mechanism of activation of light-activated phosphodiesterase and evidence for homology with hormone-activated adenylate cyclase. Bitensky MW; Yamazaki A; Wheeler MA; George JS; Rasenick MM Adv Cyclic Nucleotide Protein Phosphorylation Res; 1984; 17():227-37. PubMed ID: 6328919 [No Abstract] [Full Text] [Related]
6. Mechanism of action of monoclonal antibodies that block the light activation of the guanyl nucleotide-binding protein, transducin. Hamm HE; Deretic D; Hofmann KP; Schleicher A; Kohl B J Biol Chem; 1987 Aug; 262(22):10831-8. PubMed ID: 2440875 [TBL] [Abstract][Full Text] [Related]
7. On the role of transducin GTPase in the quenching of a phosphodiesterase cascade of vision. Arshavsky VYu ; Antoch MP; Philippov PP FEBS Lett; 1987 Nov; 224(1):19-22. PubMed ID: 2824241 [TBL] [Abstract][Full Text] [Related]
8. Deactivation kinetics of the transduction cascade of vision. Vuong TM; Chabre M Proc Natl Acad Sci U S A; 1991 Nov; 88(21):9813-7. PubMed ID: 1658789 [TBL] [Abstract][Full Text] [Related]
9. Role of G-protein-receptor interaction in amplified phosphodiesterase activation of retinal rods. Liebman PA; Sitaramayya A Adv Cyclic Nucleotide Protein Phosphorylation Res; 1984; 17():215-25. PubMed ID: 6328918 [No Abstract] [Full Text] [Related]
10. Regulation of retinal cGMP cascade by phosducin in bovine rod photoreceptor cells. Interaction of phosducin and transducin. Lee RH; Ting TD; Lieberman BS; Tobias DE; Lolley RN; Ho YK J Biol Chem; 1992 Dec; 267(35):25104-12. PubMed ID: 1334080 [TBL] [Abstract][Full Text] [Related]
11. Transducin and the cyclic GMP phosphodiesterase of retinal rod outer segments. Stryer L; Hurley JB; Fung BK Methods Enzymol; 1983; 96():617-27. PubMed ID: 6318024 [No Abstract] [Full Text] [Related]
12. Interaction between photoexcited rhodopsin and peripheral enzymes in frog retinal rods. Influence on the postmetarhodopsin II decay and phosphorylation rate of rhodopsin. Pfister C; Kühn H; Chabre M Eur J Biochem; 1983 Nov; 136(3):489-99. PubMed ID: 6315431 [TBL] [Abstract][Full Text] [Related]
13. Regulation of deactivation of photoreceptor G protein by its target enzyme and cGMP. Arshavsky VYu ; Bownds MD Nature; 1992 Jun; 357(6377):416-7. PubMed ID: 1317509 [TBL] [Abstract][Full Text] [Related]
14. A GTP-protein activator of phosphodiesterase which forms in response to bleached rhodopsin. Uchida S; Wheeler GL; Yamazaki A; Bitensky MW J Cyclic Nucleotide Res; 1981; 7(2):95-104. PubMed ID: 6278004 [TBL] [Abstract][Full Text] [Related]
15. Rapid transducin deactivation in intact stacks of bovine rod outer segment disks as studied by light scattering techniques. Arrestin requires additional soluble proteins for rapid quenching of rhodopsin catalytic activity. Wagner R; Ryba N; Uhl R FEBS Lett; 1988 Aug; 235(1-2):103-8. PubMed ID: 3136032 [TBL] [Abstract][Full Text] [Related]
16. Binding and activation of rod outer segment phosphodiesterase and guanosine triphosphate binding protein by disc membranes: influence of reassociation method and divalent cations. Miller JL; Litman BJ; Dratz EA Biochim Biophys Acta; 1987 Mar; 898(1):81-9. PubMed ID: 3030422 [TBL] [Abstract][Full Text] [Related]
17. Photolyzed rhodopsin catalyzes the exchange of GTP for bound GDP in retinal rod outer segments. Kwok-Keung Fung B; Stryer L Proc Natl Acad Sci U S A; 1980 May; 77(5):2500-4. PubMed ID: 6930647 [TBL] [Abstract][Full Text] [Related]
18. Reconstitution of rhodopsin and the cGMP cascade in polymerized bilayer membranes. Tyminski PN; Latimer LH; O'Brien DF Biochemistry; 1988 Apr; 27(8):2696-705. PubMed ID: 2840946 [TBL] [Abstract][Full Text] [Related]
19. Light-induced binding of 48-kDa protein to photoreceptor membranes is highly enhanced by phosphorylation of rhodopsin. Kühn H; Hall SW; Wilden U FEBS Lett; 1984 Oct; 176(2):473-8. PubMed ID: 6436059 [TBL] [Abstract][Full Text] [Related]
20. Interaction of hydrolysis-resistant analogs of cyclic GMP with the phosphodiesterase and light-sensitive channel of retinal rod outer segments. Zimmerman AL; Yamanaka G; Eckstein F; Baylor DA; Stryer L Proc Natl Acad Sci U S A; 1985 Dec; 82(24):8813-7. PubMed ID: 2417228 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]