BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 30060480)

  • 1. Differentiation of Adsorptive and Viscous Effects of Dietary Fibres on Bile Acid Release by Means of In Vitro Digestion and Dialysis.
    Naumann S; Schweiggert-Weisz U; Bader-Mittermaier S; Haller D; Eisner P
    Int J Mol Sci; 2018 Jul; 19(8):. PubMed ID: 30060480
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In Vitro Interactions of Dietary Fibre Enriched Food Ingredients with Primary and Secondary Bile Acids.
    Naumann S; Schweiggert-Weisz U; Eglmeier J; Haller D; Eisner P
    Nutrients; 2019 Jun; 11(6):. PubMed ID: 31242595
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Retention of Primary Bile Acids by Lupin Cell Wall Polysaccharides Under In Vitro Digestion Conditions.
    Naumann S; Schweiggert-Weisz U; Haller D; Eisner P
    Nutrients; 2019 Sep; 11(9):. PubMed ID: 31492011
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetic analysis of bile salt passage across a dialysis membrane in the presence of cereal soluble dietary fibre polymers.
    Gunness P; Flanagan BM; Shelat K; Gilbert RG; Gidley MJ
    Food Chem; 2012 Oct; 134(4):2007-13. PubMed ID: 23442650
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Binding of bile acids by pastry products containing bioactive substances during in vitro digestion.
    Dziedzic K; Górecka D; Szwengiel A; Smoczyńska P; Czaczyk K; Komolka P
    Food Funct; 2015 Mar; 6(3):1011-20. PubMed ID: 25677572
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of legume kernel fibres and citrus fibre on putative risk factors for colorectal cancer: a randomised, double-blind, crossover human intervention trial.
    Fechner A; Fenske K; Jahreis G
    Nutr J; 2013 Jul; 12():101. PubMed ID: 24060277
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oat beta-glucan increases bile acid excretion and a fiber-rich barley fraction increases cholesterol excretion in ileostomy subjects.
    Lia A; Hallmans G; Sandberg AS; Sundberg B; Aman P; Andersson H
    Am J Clin Nutr; 1995 Dec; 62(6):1245-51. PubMed ID: 7491888
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanisms of Interactions between Bile Acids and Plant Compounds-A Review.
    Naumann S; Haller D; Eisner P; Schweiggert-Weisz U
    Int J Mol Sci; 2020 Sep; 21(18):. PubMed ID: 32899482
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bile acid-retention by native and modified oat and barley β-glucan.
    Marasca E; Boulos S; Nyström L
    Carbohydr Polym; 2020 May; 236():116034. PubMed ID: 32172850
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro bile acid-binding capacity of dietary fibre sources and their effects with bile acid on broiler chicken performance and lipid digestibility.
    Hemati Matin HR; Shariatmadari F; Karimi Torshizi MA; Chiba LI
    Br Poult Sci; 2016 Jun; 57(3):348-57. PubMed ID: 27076119
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Barley β-glucan reduces blood cholesterol levels via interrupting bile acid metabolism.
    Wang Y; Harding SV; Thandapilly SJ; Tosh SM; Jones PJH; Ames NP
    Br J Nutr; 2017 Nov; 118(10):822-829. PubMed ID: 29115200
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determination of bile acids by hollow fibre liquid-phase microextraction coupled with gas chromatography.
    Ghaffarzadegan T; Nyman M; Jönsson JÅ; Sandahl M
    J Chromatogr B Analyt Technol Biomed Life Sci; 2014 Jan; 944():69-74. PubMed ID: 24295906
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physical effects of dietary fibre on simulated luminal flow, studied by in vitro dynamic gastrointestinal digestion and fermentation.
    Tamargo A; Cueva C; Alvarez MD; Herranz B; Moreno-Arribas MV; Laguna L
    Food Funct; 2019 Jun; 10(6):3452-3465. PubMed ID: 31139792
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The bile acids binding of the fibre-rich fractions of three starchy legumes.
    Elhardallou SB
    Plant Foods Hum Nutr; 1992 Jul; 42(3):207-18. PubMed ID: 1323825
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Binding of bile salts to fibre-enriched wheat fibre.
    Florén CH; Nilsson A
    Scand J Gastroenterol Suppl; 1987; 129():192-9. PubMed ID: 2820035
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Barley β-glucan increases fecal bile acid excretion and short chain fatty acid levels in mildly hypercholesterolemic individuals.
    Thandapilly SJ; Ndou SP; Wang Y; Nyachoti CM; Ames NP
    Food Funct; 2018 Jun; 9(6):3092-3096. PubMed ID: 29872803
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dietary fibre, physicochemical properties and their relationship to health.
    Blackwood AD; Salter J; Dettmar PW; Chaplin MF
    J R Soc Promot Health; 2000 Dec; 120(4):242-7. PubMed ID: 11197452
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Water-binding capacity and viscosity of Australian sweet lupin kernel fibre under in vitro conditions simulating the human upper gastrointestinal tract.
    Turnbull CM; Baxter AL; Johnson SK
    Int J Food Sci Nutr; 2005 Mar; 56(2):87-94. PubMed ID: 16019318
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The formation of short-chain fatty acids is positively associated with the blood lipid-lowering effect of lupin kernel fiber in moderately hypercholesterolemic adults.
    Fechner A; Kiehntopf M; Jahreis G
    J Nutr; 2014 May; 144(5):599-607. PubMed ID: 24572041
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Binding of bile salts to fibre-enriched wheat bran.
    Florén CH; Nilsson A
    Hum Nutr Clin Nutr; 1982; 36(5):381-90. PubMed ID: 6294005
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.