BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 30060597)

  • 1. The Tip of an Iceberg: Replication-Associated Functions of the Tumor Suppressor p53.
    Gottifredi V; Wiesmüller L
    Cancers (Basel); 2018 Jul; 10(8):. PubMed ID: 30060597
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DNA damage tolerance pathway involving DNA polymerase ι and the tumor suppressor p53 regulates DNA replication fork progression.
    Hampp S; Kiessling T; Buechle K; Mansilla SF; Thomale J; Rall M; Ahn J; Pospiech H; Gottifredi V; Wiesmüller L
    Proc Natl Acad Sci U S A; 2016 Jul; 113(30):E4311-9. PubMed ID: 27407148
    [TBL] [Abstract][Full Text] [Related]  

  • 3. p53 orchestrates DNA replication restart homeostasis by suppressing mutagenic RAD52 and POLθ pathways.
    Roy S; Tomaszowski KH; Luzwick JW; Park S; Li J; Murphy M; Schlacher K
    Elife; 2018 Jan; 7():. PubMed ID: 29334356
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predominant role of DNA polymerase eta and p53-dependent translesion synthesis in the survival of ultraviolet-irradiated human cells.
    Lerner LK; Francisco G; Soltys DT; Rocha CR; Quinet A; Vessoni AT; Castro LP; David TI; Bustos SO; Strauss BE; Gottifredi V; Stary A; Sarasin A; Chammas R; Menck CF
    Nucleic Acids Res; 2017 Feb; 45(3):1270-1280. PubMed ID: 28180309
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polymerase eta and p53 jointly regulate cell survival, apoptosis and Mre11 recombination during S phase checkpoint arrest after UV irradiation.
    Cleaver JE; Bartholomew J; Char D; Crowley E; Feeney L; Limoli CL
    DNA Repair (Amst); 2002 Jan; 1(1):41-57. PubMed ID: 12509296
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Filling gaps in translesion DNA synthesis in human cells.
    Quinet A; Lerner LK; Martins DJ; Menck CFM
    Mutat Res Genet Toxicol Environ Mutagen; 2018 Dec; 836(Pt B):127-142. PubMed ID: 30442338
    [TBL] [Abstract][Full Text] [Related]  

  • 7. p53 gain-of-function cancer mutants induce genetic instability by inactivating ATM.
    Song H; Hollstein M; Xu Y
    Nat Cell Biol; 2007 May; 9(5):573-80. PubMed ID: 17417627
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Smarcal1-Mediated Fork Reversal Triggers Mre11-Dependent Degradation of Nascent DNA in the Absence of Brca2 and Stable Rad51 Nucleofilaments.
    Kolinjivadi AM; Sannino V; De Antoni A; Zadorozhny K; Kilkenny M; Técher H; Baldi G; Shen R; Ciccia A; Pellegrini L; Krejci L; Costanzo V
    Mol Cell; 2017 Sep; 67(5):867-881.e7. PubMed ID: 28757209
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of the interplay between stemness features, p53 and pol iota on replication pathway choices.
    Ihle M; Biber S; Schroeder IS; Blattner C; Deniz M; Damia G; Gottifredi V; Wiesmüller L
    Nucleic Acids Res; 2021 Jul; 49(13):7457-7475. PubMed ID: 34165573
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physiological and Pathological Roles of RAD52 at DNA Replication Forks.
    Malacaria E; Honda M; Franchitto A; Spies M; Pichierri P
    Cancers (Basel); 2020 Feb; 12(2):. PubMed ID: 32050645
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Replication fork reversal triggers fork degradation in BRCA2-defective cells.
    Mijic S; Zellweger R; Chappidi N; Berti M; Jacobs K; Mutreja K; Ursich S; Ray Chaudhuri A; Nussenzweig A; Janscak P; Lopes M
    Nat Commun; 2017 Oct; 8(1):859. PubMed ID: 29038466
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MDM2 oncogene as a novel target for human cancer therapy.
    Zhang ; Wang H
    Curr Pharm Des; 2000 Mar; 6(4):393-416. PubMed ID: 10788589
    [TBL] [Abstract][Full Text] [Related]  

  • 13. p53 Activity Results in DNA Replication Fork Processivity.
    Klusmann I; Rodewald S; Müller L; Friedrich M; Wienken M; Li Y; Schulz-Heddergott R; Dobbelstein M
    Cell Rep; 2016 Nov; 17(7):1845-1857. PubMed ID: 27829155
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deletion of BRCA2 exon 27 causes defects in response to both stalled and collapsed replication forks.
    Kim TM; Son MY; Dodds S; Hu L; Hasty P
    Mutat Res; 2014; 766-767():66-72. PubMed ID: 25847274
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wild-type p53 inhibits replication-associated homologous recombination.
    Janz C; Wiesmüller L
    Oncogene; 2002 Aug; 21(38):5929-33. PubMed ID: 12185593
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DNA Polymerase Eta Prevents Tumor Cell-Cycle Arrest and Cell Death during Recovery from Replication Stress.
    Barnes RP; Tsao WC; Moldovan GL; Eckert KA
    Cancer Res; 2018 Dec; 78(23):6549-6560. PubMed ID: 30297532
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distinct roles of RAD52 and POLQ in chromosomal break repair and replication stress response.
    Kelso AA; Lopezcolorado FW; Bhargava R; Stark JM
    PLoS Genet; 2019 Aug; 15(8):e1008319. PubMed ID: 31381562
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deletion of BRCA2 exon 27 causes defects in response to both stalled and collapsed replication forks.
    Kim TM; Son MY; Dodds S; Hu L; Hasty P
    Mutat Res; 2014; 766-767():66-72. PubMed ID: 25773776
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Replication Fork Slowing and Reversal upon DNA Damage Require PCNA Polyubiquitination and ZRANB3 DNA Translocase Activity.
    Vujanovic M; Krietsch J; Raso MC; Terraneo N; Zellweger R; Schmid JA; Taglialatela A; Huang JW; Holland CL; Zwicky K; Herrador R; Jacobs H; Cortez D; Ciccia A; Penengo L; Lopes M
    Mol Cell; 2017 Sep; 67(5):882-890.e5. PubMed ID: 28886337
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of Y-family translesion DNA polymerases in replication stress: Implications for new cancer therapeutic targets.
    Tonzi P; Huang TT
    DNA Repair (Amst); 2019 Jun; 78():20-26. PubMed ID: 30954011
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.