BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

360 related articles for article (PubMed ID: 30060743)

  • 21. Organization and roles of nucleosomes at mouse meiotic recombination hotspots.
    Getun IV; Wu ZK; Bois PR
    Nucleus; 2012; 3(3):244-50. PubMed ID: 22572955
    [TBL] [Abstract][Full Text] [Related]  

  • 22. PRDM9 drives evolutionary erosion of hotspots in Mus musculus through haplotype-specific initiation of meiotic recombination.
    Baker CL; Kajita S; Walker M; Saxl RL; Raghupathy N; Choi K; Petkov PM; Paigen K
    PLoS Genet; 2015 Jan; 11(1):e1004916. PubMed ID: 25568937
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mutation hotspots at CTCF binding sites coupled to chromosomal instability in gastrointestinal cancers.
    Guo YA; Chang MM; Huang W; Ooi WF; Xing M; Tan P; Skanderup AJ
    Nat Commun; 2018 Apr; 9(1):1520. PubMed ID: 29670109
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cell-type-specific genomics reveals histone modification dynamics in mammalian meiosis.
    Lam KG; Brick K; Cheng G; Pratto F; Camerini-Otero RD
    Nat Commun; 2019 Aug; 10(1):3821. PubMed ID: 31444359
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A sequence-based deep learning approach to predict CTCF-mediated chromatin loop.
    Lv H; Dao FY; Zulfiqar H; Su W; Ding H; Liu L; Lin H
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33634313
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The Landscape of Mouse Meiotic Double-Strand Break Formation, Processing, and Repair.
    Lange J; Yamada S; Tischfield SE; Pan J; Kim S; Zhu X; Socci ND; Jasin M; Keeney S
    Cell; 2016 Oct; 167(3):695-708.e16. PubMed ID: 27745971
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nuclear localization of PRDM9 and its role in meiotic chromatin modifications and homologous synapsis.
    Sun F; Fujiwara Y; Reinholdt LG; Hu J; Saxl RL; Baker CL; Petkov PM; Paigen K; Handel MA
    Chromosoma; 2015 Sep; 124(3):397-415. PubMed ID: 25894966
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Integrative characterization of G-Quadruplexes in the three-dimensional chromatin structure.
    Hou Y; Li F; Zhang R; Li S; Liu H; Qin ZS; Sun X
    Epigenetics; 2019 Sep; 14(9):894-911. PubMed ID: 31177910
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Constitutively bound CTCF sites maintain 3D chromatin architecture and long-range epigenetically regulated domains.
    Khoury A; Achinger-Kawecka J; Bert SA; Smith GC; French HJ; Luu PL; Peters TJ; Du Q; Parry AJ; Valdes-Mora F; Taberlay PC; Stirzaker C; Statham AL; Clark SJ
    Nat Commun; 2020 Jan; 11(1):54. PubMed ID: 31911579
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Predicting CTCF-mediated chromatin loops using CTCF-MP.
    Zhang R; Wang Y; Yang Y; Zhang Y; Ma J
    Bioinformatics; 2018 Jul; 34(13):i133-i141. PubMed ID: 29949986
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Variable Extent of Lineage-Specificity and Developmental Stage-Specificity of Cohesin and CCCTC-Binding Factor Binding Within the Immunoglobulin and T Cell Receptor Loci.
    Loguercio S; Barajas-Mora EM; Shih HY; Krangel MS; Feeney AJ
    Front Immunol; 2018; 9():425. PubMed ID: 29593713
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Interplay between modifications of chromatin and meiotic recombination hotspots.
    Brachet E; Sommermeyer V; Borde V
    Biol Cell; 2012 Feb; 104(2):51-69. PubMed ID: 22188336
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Robust CTCF-Based Chromatin Architecture Underpins Epigenetic Changes in the Heart Failure Stress-Gene Response.
    Lee DP; Tan WLW; Anene-Nzelu CG; Lee CJM; Li PY; Luu TDA; Chan CX; Tiang Z; Ng SL; Huang X; Efthymios M; Autio MI; Jiang J; Fullwood MJ; Prabhakar S; Lieberman Aiden E; Foo RS
    Circulation; 2019 Apr; 139(16):1937-1956. PubMed ID: 30717603
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Regulation of CTCF loop formation during pancreatic cell differentiation.
    Lyu X; Rowley MJ; Kulik MJ; Dalton S; Corces VG
    Nat Commun; 2023 Oct; 14(1):6314. PubMed ID: 37813869
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A common genomic code for chromatin architecture and recombination landscape.
    Jabbari K; Wirtz J; Rauscher M; Wiehe T
    PLoS One; 2019; 14(3):e0213278. PubMed ID: 30865674
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Pan-cancer analysis of somatic mutations and epigenetic alterations in insulated neighbourhood boundaries.
    Pinoli P; Stamoulakatou E; Nguyen AP; Rodríguez Martínez M; Ceri S
    PLoS One; 2020; 15(1):e0227180. PubMed ID: 31945090
    [TBL] [Abstract][Full Text] [Related]  

  • 37. High-Resolution Global Analysis of the Influences of Bas1 and Ino4 Transcription Factors on Meiotic DNA Break Distributions in Saccharomyces cerevisiae.
    Zhu X; Keeney S
    Genetics; 2015 Oct; 201(2):525-42. PubMed ID: 26245832
    [TBL] [Abstract][Full Text] [Related]  

  • 38. PRDM9 and Its Role in Genetic Recombination.
    Paigen K; Petkov PM
    Trends Genet; 2018 Apr; 34(4):291-300. PubMed ID: 29366606
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Chromatin loop dynamics during cellular differentiation are associated with changes to both anchor and internal regulatory features.
    Bond ML; Davis ES; Quiroga IY; Dey A; Kiran M; Love MI; Won H; Phanstiel DH
    Genome Res; 2023 Aug; 33(8):1258-1268. PubMed ID: 37699658
    [TBL] [Abstract][Full Text] [Related]  

  • 40. PRDM9 activity depends on HELLS and promotes local 5-hydroxymethylcytosine enrichment.
    Imai Y; Biot M; Clément JA; Teragaki M; Urbach S; Robert T; Baudat F; Grey C; de Massy B
    Elife; 2020 Oct; 9():. PubMed ID: 33047671
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.