BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

388 related articles for article (PubMed ID: 30061369)

  • 1. Comparison of intracranial aneurysm flow quantification techniques: standard PIV vs stereoscopic PIV vs tomographic PIV vs phase-contrast MRI vs CFD.
    Roloff C; Stucht D; Beuing O; Berg P
    J Neurointerv Surg; 2019 Mar; 11(3):275-282. PubMed ID: 30061369
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Haemodynamics in a patient-specific intracranial aneurysm according to experimental and numerical approaches: A comparison of PIV, CFD and PC-MRI.
    Li Y; Yoneyama Y; Isoda H; Terada M; Kosugi T; Kosugi T; Zhang M; Ohta M
    Technol Health Care; 2021; 29(2):253-267. PubMed ID: 32568138
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hemodynamic Study of a Patient-Specific Intracranial Aneurysm: Comparative Assessment of Tomographic PIV, Stereoscopic PIV, In Vivo MRI and Computational Fluid Dynamics.
    Wu X; Gürzing S; Schinkel C; Toussaint M; Perinajová R; van Ooij P; Kenjereš S
    Cardiovasc Eng Technol; 2022 Jun; 13(3):428-442. PubMed ID: 34750782
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Complex flow patterns in a real-size intracranial aneurysm phantom: phase contrast MRI compared with particle image velocimetry and computational fluid dynamics.
    van Ooij P; Guédon A; Poelma C; Schneiders J; Rutten MC; Marquering HA; Majoie CB; VanBavel E; Nederveen AJ
    NMR Biomed; 2012 Jan; 25(1):14-26. PubMed ID: 21480417
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Computational Fluid Dynamics Rupture Challenge 2013--Phase II: Variability of Hemodynamic Simulations in Two Intracranial Aneurysms.
    Berg P; Roloff C; Beuing O; Voss S; Sugiyama S; Aristokleous N; Anayiotos AS; Ashton N; Revell A; Bressloff NW; Brown AG; Chung BJ; Cebral JR; Copelli G; Fu W; Qiao A; Geers AJ; Hodis S; Dragomir-Daescu D; Nordahl E; Bora Suzen Y; Owais Khan M; Valen-Sendstad K; Kono K; Menon PG; Albal PG; Mierka O; Münster R; Morales HG; Bonnefous O; Osman J; Goubergrits L; Pallares J; Cito S; Passalacqua A; Piskin S; Pekkan K; Ramalho S; Marques N; Sanchi S; Schumacher KR; Sturgeon J; Švihlová H; Hron J; Usera G; Mendina M; Xiang J; Meng H; Steinman DA; Janiga G
    J Biomech Eng; 2015 Dec; 137(12):121008. PubMed ID: 26473395
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PIV-measured versus CFD-predicted flow dynamics in anatomically realistic cerebral aneurysm models.
    Ford MD; Nikolov HN; Milner JS; Lownie SP; Demont EM; Kalata W; Loth F; Holdsworth DW; Steinman DA
    J Biomech Eng; 2008 Apr; 130(2):021015. PubMed ID: 18412502
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro validation of flow measurement with phase contrast MRI at 3 tesla using stereoscopic particle image velocimetry and stereoscopic particle image velocimetry-based computational fluid dynamics.
    Khodarahmi I; Shakeri M; Kotys-Traughber M; Fischer S; Sharp MK; Amini AA
    J Magn Reson Imaging; 2014 Jun; 39(6):1477-85. PubMed ID: 24123721
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cerebral blood flow in a healthy Circle of Willis and two intracranial aneurysms: computational fluid dynamics versus four-dimensional phase-contrast magnetic resonance imaging.
    Berg P; Stucht D; Janiga G; Beuing O; Speck O; Thévenin D
    J Biomech Eng; 2014 Apr; 136(4):. PubMed ID: 24292415
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In Vitro Assessment of Flow Variability in an Intracranial Aneurysm Model Using 4D Flow MRI and Tomographic PIV.
    Medero R; Falk K; Rutkowski D; Johnson K; Roldán-Alzate A
    Ann Biomed Eng; 2020 Oct; 48(10):2484-2493. PubMed ID: 32524379
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tomographic particle image velocimetry for the validation of hemodynamic simulations in an intracranial aneurysm.
    Roloff C; Berg P; Redel T; Janiga G; Thevenin D
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():1340-1343. PubMed ID: 29060124
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wall shear stress estimated with phase contrast MRI in an in vitro and in vivo intracranial aneurysm.
    van Ooij P; Potters WV; Guédon A; Schneiders JJ; Marquering HA; Majoie CB; vanBavel E; Nederveen AJ
    J Magn Reson Imaging; 2013 Oct; 38(4):876-84. PubMed ID: 23417769
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of ultrasound vector flow imaging and CFD simulations with PIV measurements of flow in a left ventricular outflow trackt phantom - Implications for clinical use and in silico studies.
    Leinan PR; Grønli T; Skjetne P; Wigen MS; Urheim S; Lovstakken L; Dahl SK
    Comput Biol Med; 2022 Jul; 146():105358. PubMed ID: 35751181
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inter-Laboratory Characterization of the Velocity Field in the FDA Blood Pump Model Using Particle Image Velocimetry (PIV).
    Hariharan P; Aycock KI; Buesen M; Day SW; Good BC; Herbertson LH; Steinseifer U; Manning KB; Craven BA; Malinauskas RA
    Cardiovasc Eng Technol; 2018 Dec; 9(4):623-640. PubMed ID: 30291585
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational fluid dynamics with stents: quantitative comparison with particle image velocimetry for three commercial off the shelf intracranial stents.
    Bouillot P; Brina O; Ouared R; Yilmaz H; Lovblad KO; Farhat M; Mendes Pereira V
    J Neurointerv Surg; 2016 Mar; 8(3):309-15. PubMed ID: 25603807
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental and CFD flow studies in an intracranial aneurysm model with Newtonian and non-Newtonian fluids.
    Frolov SV; Sindeev SV; Liepsch D; Balasso A
    Technol Health Care; 2016 May; 24(3):317-33. PubMed ID: 26835725
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Numerical simulations of flow in cerebral aneurysms: comparison of CFD results and in vivo MRI measurements.
    Rayz VL; Boussel L; Acevedo-Bolton G; Martin AJ; Young WL; Lawton MT; Higashida R; Saloner D
    J Biomech Eng; 2008 Oct; 130(5):051011. PubMed ID: 19045518
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Echo Particle Image Velocimetry for Estimation of Carotid Artery Wall Shear Stress: Repeatability, Reproducibility and Comparison with Phase-Contrast Magnetic Resonance Imaging.
    Gurung A; Gates PE; Mazzaro L; Fulford J; Zhang F; Barker AJ; Hertzberg J; Aizawa K; Strain WD; Elyas S; Shore AC; Shandas R
    Ultrasound Med Biol; 2017 Aug; 43(8):1618-1627. PubMed ID: 28501327
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Particle Image Velocimetry Used to Qualitatively Validate Computational Fluid Dynamic Simulations in an Oxygenator: A Proof of Concept.
    Schlanstein PC; Hesselmann F; Jansen SV; Gemsa J; Kaufmann TA; Klaas M; Roggenkamp D; Schröder W; Schmitz-Rode T; Steinseifer U; Arens J
    Cardiovasc Eng Technol; 2015 Sep; 6(3):340-51. PubMed ID: 26577365
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparing velocity and fluid shear stress in a stenotic phantom with steady flow: phase-contrast MRI, particle image velocimetry and computational fluid dynamics.
    Khodarahmi I
    MAGMA; 2015 Aug; 28(4):385-93. PubMed ID: 25502616
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transient flow prediction in an idealized aneurysm geometry using data assimilation.
    Gaidzik F; Stucht D; Roloff C; Speck O; Thévenin D; Janiga G
    Comput Biol Med; 2019 Dec; 115():103507. PubMed ID: 31698232
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.