These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
178 related articles for article (PubMed ID: 30061480)
1. 0.6 V, 116 nW Neural Spike Acquisition IC with Self-Biased Instrumentation Amplifier and Analog Spike Extraction. Kim JP; Lee H; Ko H Sensors (Basel); 2018 Jul; 18(8):. PubMed ID: 30061480 [TBL] [Abstract][Full Text] [Related]
2. An energy-efficient micropower neural recording amplifier. Wattanapanitch W; Fee M; Sarpeshkar R IEEE Trans Biomed Circuits Syst; 2007 Jun; 1(2):136-47. PubMed ID: 23851668 [TBL] [Abstract][Full Text] [Related]
3. A 0.6-µW Chopper Amplifier Using a Noise-Efficient DC Servo Loop and Squeezed-Inverter Stage for Power-Efficient Biopotential Sensing. Pham XT; Nguyen NT; Nguyen VT; Lee JW Sensors (Basel); 2020 Apr; 20(7):. PubMed ID: 32268594 [TBL] [Abstract][Full Text] [Related]
4. Energy efficient low-noise neural recording amplifier with enhanced noise efficiency factor. Majidzadeh V; Schmid A; Leblebici Y IEEE Trans Biomed Circuits Syst; 2011 Jun; 5(3):262-71. PubMed ID: 23851477 [TBL] [Abstract][Full Text] [Related]
5. A Low-power and Low-noise Multi-purpose Chopper Amplifier with High CMRR and PSRR. Shad E; Molinas M; Ytterdal T Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():3998-4001. PubMed ID: 33018876 [TBL] [Abstract][Full Text] [Related]
6. A 0.7 V, 40 nW Compact, Current-Mode Neural Spike Detector in 65 nm CMOS. Yao E; Chen Y; Basu A IEEE Trans Biomed Circuits Syst; 2016 Apr; 10(2):309-18. PubMed ID: 26168445 [TBL] [Abstract][Full Text] [Related]
7. A 16-Channel CMOS Chopper-Stabilized Analog Front-End ECoG Acquisition Circuit for a Closed-Loop Epileptic Seizure Control System. Wu CY; Cheng CH; Chen ZX IEEE Trans Biomed Circuits Syst; 2018 Jun; 12(3):543-553. PubMed ID: 29877818 [TBL] [Abstract][Full Text] [Related]
8. Fully Integrated Biopotential Acquisition Analog Front-End IC. Song H; Park Y; Kim H; Ko H Sensors (Basel); 2015 Sep; 15(10):25139-56. PubMed ID: 26437404 [TBL] [Abstract][Full Text] [Related]
9. A Low Noise Amplifier for Neural Spike Recording Interfaces. Ruiz-Amaya J; Rodriguez-Perez A; Delgado-Restituto M Sensors (Basel); 2015 Sep; 15(10):25313-35. PubMed ID: 26437411 [TBL] [Abstract][Full Text] [Related]
10. Biosignal integrated circuit with simultaneous acquisition of ECG and PPG for wearable healthcare applications. Kim H; Park Y; Ko Y; Mun Y; Lee S; Ko H Technol Health Care; 2018; 26(1):3-9. PubMed ID: 29060948 [TBL] [Abstract][Full Text] [Related]
11. A low-power programmable neural spike detection channel with embedded calibration and data compression. Rodriguez-Perez A; Ruiz-Amaya J; Delgado-Restituto M; Rodriguez-Vazquez Á IEEE Trans Biomed Circuits Syst; 2012 Apr; 6(2):87-100. PubMed ID: 23852974 [TBL] [Abstract][Full Text] [Related]
12. A Power Efficient Low-noise and High Swing CMOS Amplifier for Neural Recording Applications. Naderi K; Shad E; Molinas M; Heidari A Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():4298-4301. PubMed ID: 33018946 [TBL] [Abstract][Full Text] [Related]
13. A 340 nW/Channel 110 dB PSRR Neural Recording Analog Front-End Using Replica-Biasing LNA, Level-Shifter Assisted PGA, and Averaged LFP Servo Loop in 65 nm CMOS. Lyu L; Ye D; Shi CR IEEE Trans Biomed Circuits Syst; 2020 Aug; 14(4):811-824. PubMed ID: 32746334 [TBL] [Abstract][Full Text] [Related]
14. Chopper-Stabilized Instrumentation Amplifier with Automatic Frequency Tuning Loop. Wu CM; Chen HC; Yen MY; Yang SC Micromachines (Basel); 2018 Jun; 9(6):. PubMed ID: 30424222 [TBL] [Abstract][Full Text] [Related]
15. A low-power 32-channel digitally programmable neural recording integrated circuit. Wattanapanitch W; Sarpeshkar R IEEE Trans Biomed Circuits Syst; 2011 Dec; 5(6):592-602. PubMed ID: 23852555 [TBL] [Abstract][Full Text] [Related]
16. A Compact Sub-μW CMOS ECG Amplifier With 57.5-MΩ Z Sawigun C; Thanapitak S IEEE Trans Biomed Circuits Syst; 2021 Jun; 15(3):549-558. PubMed ID: 34081584 [TBL] [Abstract][Full Text] [Related]
17. Design of ultra-low power biopotential amplifiers for biosignal acquisition applications. Zhang F; Holleman J; Otis BP IEEE Trans Biomed Circuits Syst; 2012 Aug; 6(4):344-55. PubMed ID: 23853179 [TBL] [Abstract][Full Text] [Related]
18. A fully integrated neural recording amplifier with DC input stabilization. Mohseni P; Najafi K IEEE Trans Biomed Eng; 2004 May; 51(5):832-7. PubMed ID: 15132510 [TBL] [Abstract][Full Text] [Related]
19. A low-power configurable neural recording system for epileptic seizure detection. Qian C; Shi J; Parramon J; Sánchez-Sinencio E IEEE Trans Biomed Circuits Syst; 2013 Aug; 7(4):499-512. PubMed ID: 23893209 [TBL] [Abstract][Full Text] [Related]
20. A Fully Integrated Bluetooth Low-Energy Transceiver with Integrated Single Pole Double Throw and Power Management Unit for IoT Sensors. Kim SJ; Kim DG; Oh SJ; Lee DS; Pu YG; Hwang KC; Yang Y; Lee KY Sensors (Basel); 2019 May; 19(10):. PubMed ID: 31137903 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]