These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 30061502)
1. The Endochitinase of Zheng Y; Wang X; Liu S; Zhang K; Cai Z; Chen X; Zhang Y; Liu J; Wang A Int J Mol Sci; 2018 Jul; 19(8):. PubMed ID: 30061502 [TBL] [Abstract][Full Text] [Related]
2. Combinatorial effect of mutagenesis and medium component optimization on Bacillus amyloliquefaciens antifungal activity and efficacy in eradicating Botrytis cinerea. Masmoudi F; Ben Khedher S; Kamoun A; Zouari N; Tounsi S; Trigui M Microbiol Res; 2017 Apr; 197():29-38. PubMed ID: 28219523 [TBL] [Abstract][Full Text] [Related]
3. Control efficiency and expressions of resistance genes in tomato plants treated with ε-poly-l-lysine against Botrytis cinerea. Sun G; Wang H; Shi B; Shangguan N; Wang Y; Ma Q Pestic Biochem Physiol; 2017 Nov; 143():191-198. PubMed ID: 29183591 [TBL] [Abstract][Full Text] [Related]
4. Real-time RT-PCR expression analysis of chitinase and endoglucanase genes in the three-way interaction between the biocontrol strain Clonostachys rosea IK726, Botrytis cinerea and strawberry. Mamarabadi M; Jensen B; Jensen DF; Lübeck M FEMS Microbiol Lett; 2008 Aug; 285(1):101-10. PubMed ID: 18557783 [TBL] [Abstract][Full Text] [Related]
5. Three endochitinase-encoding genes identified in the biocontrol fungus Clonostachys rosea are differentially expressed. Mamarabadi M; Jensen B; Lübeck M Curr Genet; 2008 Aug; 54(2):57-70. PubMed ID: 18574585 [TBL] [Abstract][Full Text] [Related]
6. Potential of Bacillus amyloliquefaciens for biocontrol of bacterial canker of tomato incited by Clavibacter michiganensis ssp. michiganensis. Gautam S; Chauhan A; Sharma R; Sehgal R; Shirkot CK Microb Pathog; 2019 May; 130():196-203. PubMed ID: 30878620 [TBL] [Abstract][Full Text] [Related]
7. Effects of mixed culture fermentation of Bacillus amyloliquefaciens and Trichoderma longibrachiatum on its constituent strains and the biocontrol of tomato Fusarium wilt. Ma Q; Cong Y; Feng L; Liu C; Yang W; Xin Y; Chen K J Appl Microbiol; 2022 Jan; 132(1):532-546. PubMed ID: 34245640 [TBL] [Abstract][Full Text] [Related]
8. Inhibition of SlMPK1, SlMPK2, and SlMPK3 Disrupts Defense Signaling Pathways and Enhances Tomato Fruit Susceptibility to Botrytis cinerea. Zheng Y; Yang Y; Liu C; Chen L; Sheng J; Shen L J Agric Food Chem; 2015 Jun; 63(22):5509-17. PubMed ID: 25910076 [TBL] [Abstract][Full Text] [Related]
9. Genomic Analysis Reveals Potential Mechanisms Underlying Promotion of Tomato Plant Growth and Antagonism of Soilborne Pathogens by Bacillus amyloliquefaciens Ba13. Ji C; Zhang M; Kong Z; Chen X; Wang X; Ding W; Lai H; Guo Q Microbiol Spectr; 2021 Dec; 9(3):e0161521. PubMed ID: 34756081 [TBL] [Abstract][Full Text] [Related]
10. The dual role of oxalic acid on the resistance of tomato against Botrytis cinerea. Sun G; Feng C; Zhang A; Zhang Y; Chang D; Wang Y; Ma Q World J Microbiol Biotechnol; 2019 Feb; 35(2):36. PubMed ID: 30712096 [TBL] [Abstract][Full Text] [Related]
11. Construction of a Streptomyces lydicus A01 transformant with a chit42 gene from Trichoderma harzianum P1 and evaluation of its biocontrol activity against Botrytis cinerea. Wu Q; Bai L; Liu W; Li Y; Lu C; Li Y; Fu K; Yu C; Chen J J Microbiol; 2013 Apr; 51(2):166-73. PubMed ID: 23625216 [TBL] [Abstract][Full Text] [Related]
12. Biocontrol agents of Botrytis cinerea tested in climate chambers by making artificial infection on tomato leafs. Gielen S; Aerts R; Seels B Commun Agric Appl Biol Sci; 2004; 69(4):631-9. PubMed ID: 15756850 [TBL] [Abstract][Full Text] [Related]
13. Conferred resistance to Botrytis cinerea in Lilium by overexpression of the RCH10 chitinase gene. Núñez de Cáceres González FF; Davey MR; Cancho Sanchez E; Wilson ZA Plant Cell Rep; 2015 Jul; 34(7):1201-9. PubMed ID: 25744417 [TBL] [Abstract][Full Text] [Related]
14. Identification of a small antimycotic peptide produced by Bacillus amyloliquefaciens 6256. Zhang QX; Zhang Y; He LL; Ji ZL; Tong YH Pestic Biochem Physiol; 2018 Sep; 150():78-82. PubMed ID: 30195391 [TBL] [Abstract][Full Text] [Related]
15. Characterization and evaluation of Bacillus amyloliquefaciens strain WF02 regarding its biocontrol activities and genetic responses against bacterial wilt in two different resistant tomato cultivars. Huang CN; Lin CP; Hsieh FC; Lee SK; Cheng KC; Liu CT World J Microbiol Biotechnol; 2016 Nov; 32(11):183. PubMed ID: 27646210 [TBL] [Abstract][Full Text] [Related]
16. Characterization of endophytic Bacillus strains from tomato plants (Lycopersicon esculentum) displaying antifungal activity against Botrytis cinerea Pers. Kefi A; Ben Slimene I; Karkouch I; Rihouey C; Azaeiz S; Bejaoui M; Belaid R; Cosette P; Jouenne T; Limam F World J Microbiol Biotechnol; 2015 Dec; 31(12):1967-76. PubMed ID: 26347324 [TBL] [Abstract][Full Text] [Related]
17. Role of dioxygenase α-DOX2 and SA in basal response and in hexanoic acid-induced resistance of tomato (Solanum lycopersicum) plants against Botrytis cinerea. Angulo C; de la O Leyva M; Finiti I; López-Cruz J; Fernández-Crespo E; García-Agustín P; González-Bosch C J Plant Physiol; 2015 Mar; 175():163-73. PubMed ID: 25543862 [TBL] [Abstract][Full Text] [Related]
19. Enhancing tomato disease resistance through endogenous antifungal proteins and introduced nematode-targeting dsRNA of biocontrol agent Bacillus velezensis HS-3. Han J; Zhu J; Liu S; Sun X; Wang S; Miao G Pest Manag Sci; 2024 Aug; 80(8):3839-3851. PubMed ID: 38511614 [TBL] [Abstract][Full Text] [Related]
20. Knockout of SlMAPK3 Reduced Disease Resistance to Botrytis cinerea in Tomato Plants. Zhang S; Wang L; Zhao R; Yu W; Li R; Li Y; Sheng J; Shen L J Agric Food Chem; 2018 Aug; 66(34):8949-8956. PubMed ID: 30092129 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]