These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 30061529)

  • 1. Understanding the Positional Binding and Substrate Interaction of a Highly Thermostable GH10 Xylanase from
    Yang J; Han Z
    Biomolecules; 2018 Jul; 8(3):. PubMed ID: 30061529
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improving the catalytic activity of thermostable xylanase from Thermotoga maritima via mutagenesis of non-catalytic residues at glycone subsites.
    Yang J; Ma T; Shang-Guan F; Han Z
    Enzyme Microb Technol; 2020 Sep; 139():109579. PubMed ID: 32732029
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural basis of the substrate subsite and the highly thermal stability of xylanase 10B from Thermotoga maritima MSB8.
    Ihsanawati ; Kumasaka T; Kaneko T; Morokuma C; Yatsunami R; Sato T; Nakamura S; Tanaka N
    Proteins; 2005 Dec; 61(4):999-1009. PubMed ID: 16247799
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of orientation of carbohydrate binding modules family 22 and 6 on the catalytic activity of Thermotoga maritima xylanase XynB.
    Tajwar R; Shahid S; Zafar R; Akhtar MW
    Enzyme Microb Technol; 2017 Nov; 106():75-82. PubMed ID: 28859813
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determination of the modes of action and synergies of xylanases by analysis of xylooligosaccharide profiles over time using fluorescence-assisted carbohydrate electrophoresis.
    Gong W; Zhang H; Tian L; Liu S; Wu X; Li F; Wang L
    Electrophoresis; 2016 Jul; 37(12):1640-50. PubMed ID: 27060349
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure features of GH10 xylanase from Caldicellulosiruptor bescii: implication for its thermophilic adaption and substrate binding preference.
    Zhang Y; An J; Yang G; Zhang X; Xie Y; Chen L; Feng Y
    Acta Biochim Biophys Sin (Shanghai); 2016 Oct; 48(10):948-957. PubMed ID: 27563004
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural insights of RmXyn10A - A prebiotic-producing GH10 xylanase with a non-conserved aglycone binding region.
    Aronsson A; Güler F; Petoukhov MV; Crennell SJ; Svergun DI; Linares-Pastén JA; Nordberg Karlsson E
    Biochim Biophys Acta Proteins Proteom; 2018 Feb; 1866(2):292-306. PubMed ID: 29155107
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Insights into the roles of non-catalytic residues in the active site of a GH10 xylanase with activity on cellulose.
    Chu Y; Tu T; Penttinen L; Xue X; Wang X; Yi Z; Gong L; Rouvinen J; Luo H; Hakulinen N; Yao B; Su X
    J Biol Chem; 2017 Nov; 292(47):19315-19327. PubMed ID: 28974575
    [TBL] [Abstract][Full Text] [Related]  

  • 9. GH10 xylanase D from Penicillium funiculosum: biochemical studies and xylooligosaccharide production.
    Lafond M; Tauzin A; Desseaux V; Bonnin E; Ajandouz el-H; Giardina T
    Microb Cell Fact; 2011 Apr; 10():20. PubMed ID: 21466666
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural Considerations on the Use of Endo-Xylanases for the Production of prebiotic Xylooligosaccharides from Biomass.
    Linares-Pasten JA; Aronsson A; Karlsson EN
    Curr Protein Pept Sci; 2018; 19(1):48-67. PubMed ID: 27670134
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational approach for identification, characterization, three-dimensional structure modelling and machine learning-based thermostability prediction of xylanases from the genome of Aspergillus fumigatus.
    Dodda SR; Hossain M; Kapoor BS; Dasgupta S; B VPR; Aikat K; Mukhopadhyay SS
    Comput Biol Chem; 2021 Apr; 91():107451. PubMed ID: 33601238
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improving Hydrolysis Characteristics of Xylanases by Site-Directed Mutagenesis in Binding-Site Subsites from Streptomyces L10608.
    Xiong K; Xiong S; Gao S; Li Q; Sun B; Li X
    Int J Mol Sci; 2018 Mar; 19(3):. PubMed ID: 29533991
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mutagenesis and subsite mapping underpin the importance for substrate specificity of the aglycon subsites of glycoside hydrolase family 11 xylanases.
    Pollet A; Lagaert S; Eneyskaya E; Kulminskaya A; Delcour JA; Courtin CM
    Biochim Biophys Acta; 2010 Apr; 1804(4):977-85. PubMed ID: 20096384
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two-domain GH30 xylanase from human gut microbiota as a tool for enzymatic production of xylooligosaccharides: Crystallographic structure and a synergy with GH11 xylosidase.
    Vacilotto MM; de Araujo Montalvão L; Pellegrini VOA; Liberato MV; de Araujo EA; Polikarpov I
    Carbohydr Polym; 2024 Aug; 337():122141. PubMed ID: 38710568
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of the Wild-Type and Truncated Forms of a Neutral GH10 Xylanase from
    Hu H; Chen K; Li L; Long L; Ding S
    J Microbiol Biotechnol; 2017 Apr; 27(4):775-784. PubMed ID: 28173691
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural and biochemical analysis of Cellvibrio japonicus xylanase 10C: how variation in substrate-binding cleft influences the catalytic profile of family GH-10 xylanases.
    Pell G; Szabo L; Charnock SJ; Xie H; Gloster TM; Davies GJ; Gilbert HJ
    J Biol Chem; 2004 Mar; 279(12):11777-88. PubMed ID: 14670951
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biochemical Characterization of Xylanases from
    Liu L; Xu M; Cao Y; Wang H; Shao J; Xu M; Zhang Y; Wang Y; Zhang W; Meng X; Liu W
    J Agric Food Chem; 2020 Mar; 68(10):3184-3194. PubMed ID: 32105462
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure and function of a family 10 beta-xylanase chimera of Streptomyces olivaceoviridis E-86 FXYN and Cellulomonas fimi Cex.
    Kaneko S; Ichinose H; Fujimoto Z; Kuno A; Yura K; Go M; Mizuno H; Kusakabe I; Kobayashi H
    J Biol Chem; 2004 Jun; 279(25):26619-26. PubMed ID: 15078885
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antioxidant capacity of xylooligosaccharides generated from beechwood xylan by recombinant family GH10 Aspergillus niger xylanase A and insights into the enzyme's competitive inhibition by riceXIP.
    Zhang K; Qi X; Feng N; Wang Y; Wei H; Liu M
    Enzyme Microb Technol; 2024 Sep; 179():110456. PubMed ID: 38754147
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering the thermostability of a TIM-barrel enzyme by rational family shuffling.
    Kamondi S; Szilágyi A; Barna L; Závodszky P
    Biochem Biophys Res Commun; 2008 Oct; 374(4):725-30. PubMed ID: 18667161
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.