These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
418 related articles for article (PubMed ID: 30061885)
1. Hypoxia-Driven Immunosuppressive Metabolites in the Tumor Microenvironment: New Approaches for Combinational Immunotherapy. Li Y; Patel SP; Roszik J; Qin Y Front Immunol; 2018; 9():1591. PubMed ID: 30061885 [TBL] [Abstract][Full Text] [Related]
2. Overcoming Hypoxia-Mediated Tumor Progression: Combinatorial Approaches Targeting pH Regulation, Angiogenesis and Immune Dysfunction. McDonald PC; Chafe SC; Dedhar S Front Cell Dev Biol; 2016; 4():27. PubMed ID: 27066484 [TBL] [Abstract][Full Text] [Related]
3. Targeting hypoxia in the tumor microenvironment: a potential strategy to improve cancer immunotherapy. Wang B; Zhao Q; Zhang Y; Liu Z; Zheng Z; Liu S; Meng L; Xin Y; Jiang X J Exp Clin Cancer Res; 2021 Jan; 40(1):24. PubMed ID: 33422072 [TBL] [Abstract][Full Text] [Related]
4. Hypoxic stress: obstacles and opportunities for innovative immunotherapy of cancer. Chouaib S; Noman MZ; Kosmatopoulos K; Curran MA Oncogene; 2017 Jan; 36(4):439-445. PubMed ID: 27345407 [TBL] [Abstract][Full Text] [Related]
5. Enhancing photodynamic immunotherapy by reprograming the immunosuppressive tumor microenvironment with hypoxia relief. He M; Zhang M; Xu T; Xue S; Li D; Zhao Y; Zhi F; Ding D J Control Release; 2024 Apr; 368():233-250. PubMed ID: 38395154 [TBL] [Abstract][Full Text] [Related]
6. Metformin improves cancer immunotherapy by directly rescuing tumor-infiltrating CD8 T lymphocytes from hypoxia-induced immunosuppression. Finisguerra V; Dvorakova T; Formenti M; Van Meerbeeck P; Mignion L; Gallez B; Van den Eynde BJ J Immunother Cancer; 2023 May; 11(5):. PubMed ID: 37147018 [TBL] [Abstract][Full Text] [Related]
7. Hypoxia as a potential inducer of immune tolerance, tumor plasticity and a driver of tumor mutational burden: Impact on cancer immunotherapy. Abou Khouzam R; Janji B; Thiery J; Zaarour RF; Chamseddine AN; Mayr H; Savagner P; Kieda C; Gad S; Buart S; Lehn JM; Limani P; Chouaib S Semin Cancer Biol; 2023 Dec; 97():104-123. PubMed ID: 38029865 [TBL] [Abstract][Full Text] [Related]
8. Directing Hypoxic Tumor Microenvironment and HIF to Illuminate Cancer Immunotherapy's Existing Prospects and Challenges in Drug Targets. Ray SK; Mukherjee S Curr Drug Targets; 2022; 23(5):471-485. PubMed ID: 35021970 [TBL] [Abstract][Full Text] [Related]
9. Rationale for Combining Radiotherapy and Immune Checkpoint Inhibition for Patients With Hypoxic Tumors. Eckert F; Zwirner K; Boeke S; Thorwarth D; Zips D; Huber SM Front Immunol; 2019; 10():407. PubMed ID: 30930892 [TBL] [Abstract][Full Text] [Related]
10. The Promise of Targeting Hypoxia to Improve Cancer Immunotherapy: Mirage or Reality? Janji B; Chouaib S Front Immunol; 2022; 13():880810. PubMed ID: 35795658 [TBL] [Abstract][Full Text] [Related]
11. Hypoxia: a key player in antitumor immune response. A Review in the Theme: Cellular Responses to Hypoxia. Noman MZ; Hasmim M; Messai Y; Terry S; Kieda C; Janji B; Chouaib S Am J Physiol Cell Physiol; 2015 Nov; 309(9):C569-79. PubMed ID: 26310815 [TBL] [Abstract][Full Text] [Related]
12. Hypoxia and programmed cell death-ligand 1 expression in the tumor microenvironment: a review of the effects of hypoxia-induced factor-1 on immunotherapy. Chamani FK; Etebari A; Hajivalili M; Mosaffa N; Jalali SA Mol Biol Rep; 2024 Jan; 51(1):88. PubMed ID: 38183512 [TBL] [Abstract][Full Text] [Related]
13. Functionalized biomimetic nanoparticles combining programmed death-1/programmed death-ligand 1 blockade with photothermal ablation for enhanced colorectal cancer immunotherapy. Xiao Y; Zhu T; Zeng Q; Tan Q; Jiang G; Huang X Acta Biomater; 2023 Feb; 157():451-466. PubMed ID: 36442821 [TBL] [Abstract][Full Text] [Related]
14. CXCR4 inhibition in tumor microenvironment facilitates anti-programmed death receptor-1 immunotherapy in sorafenib-treated hepatocellular carcinoma in mice. Chen Y; Ramjiawan RR; Reiberger T; Ng MR; Hato T; Huang Y; Ochiai H; Kitahara S; Unan EC; Reddy TP; Fan C; Huang P; Bardeesy N; Zhu AX; Jain RK; Duda DG Hepatology; 2015 May; 61(5):1591-602. PubMed ID: 25529917 [TBL] [Abstract][Full Text] [Related]
15. Targeting hypoxia and hypoxia-inducible factor-1 in the tumor microenvironment for optimal cancer immunotherapy. Kheshtchin N; Hadjati J J Cell Physiol; 2022 Feb; 237(2):1285-1298. PubMed ID: 34796969 [TBL] [Abstract][Full Text] [Related]
16. The role of hypoxia-inducible factor 1 in tumor immune evasion. You L; Wu W; Wang X; Fang L; Adam V; Nepovimova E; Wu Q; Kuca K Med Res Rev; 2021 May; 41(3):1622-1643. PubMed ID: 33305856 [TBL] [Abstract][Full Text] [Related]
17. Hypoxia as a driver of resistance to immunotherapy. Kopecka J; Salaroglio IC; Perez-Ruiz E; Sarmento-Ribeiro AB; Saponara S; De Las Rivas J; Riganti C Drug Resist Updat; 2021 Dec; 59():100787. PubMed ID: 34840068 [TBL] [Abstract][Full Text] [Related]
18. Hypoxia as a barrier to immunotherapy in pancreatic adenocarcinoma. Daniel SK; Sullivan KM; Labadie KP; Pillarisetty VG Clin Transl Med; 2019 Apr; 8(1):10. PubMed ID: 30931508 [TBL] [Abstract][Full Text] [Related]
19. Salicylic acid-based hypoxia-responsive chemodynamic nanomedicines boost antitumor immunotherapy by modulating immunosuppressive tumor microenvironment. Sun K; Yu J; Hu J; Chen J; Song J; Chen Z; Cai Z; Lu Z; Zhang L; Wang Z Acta Biomater; 2022 Aug; 148():230-243. PubMed ID: 35724919 [TBL] [Abstract][Full Text] [Related]
20. Hypoxia-driven metabolic heterogeneity and immune evasive behaviour of gastrointestinal cancers: Elements of a recipe for disaster. Mishra AK; Singh SK; Dayanandan S; Banerjee S; Chakraborty S; Gopal AB; Samal S; Poirah I; Chakraborty D; Bhattacharyya A Cytokine; 2022 Aug; 156():155917. PubMed ID: 35660715 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]