BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 30061929)

  • 1. Engineering TATA-binding protein Spt15 to improve ethanol tolerance and production in
    Li P; Fu X; Li S; Zhang L
    Biotechnol Biofuels; 2018; 11():207. PubMed ID: 30061929
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isobutanol tolerance and production of Saccharomyces cerevisiae can be improved by engineering its TATA-binding protein Spt15.
    Zhang W; Shao W; Zhang A
    Lett Appl Microbiol; 2021 Dec; 73(6):694-707. PubMed ID: 34418130
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Construction of Saccharomyces cerevisiae strains with enhanced ethanol tolerance by mutagenesis of the TATA-binding protein gene and identification of novel genes associated with ethanol tolerance.
    Yang J; Bae JY; Lee YM; Kwon H; Moon HY; Kang HA; Yee SB; Kim W; Choi W
    Biotechnol Bioeng; 2011 Aug; 108(8):1776-87. PubMed ID: 21437883
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mutations of the TATA-binding protein confer enhanced tolerance to hyperosmotic stress in Saccharomyces cerevisiae.
    Kim NR; Yang J; Kwon H; An J; Choi W; Kim W
    Appl Microbiol Biotechnol; 2013 Sep; 97(18):8227-38. PubMed ID: 23709042
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The transcription factors Hsf1 and Msn2 of thermotolerant
    Li P; Fu X; Zhang L; Zhang Z; Li J; Li S
    Biotechnol Biofuels; 2017; 10():289. PubMed ID: 29213328
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proteomic profiling and integrated analysis with transcriptomic data bring new insights in the stress responses of
    Li P; Fu X; Chen M; Zhang L; Li S
    Biotechnol Biofuels; 2019; 12():49. PubMed ID: 30899329
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Creation of a Low-Alcohol-Production Yeast by a Mutated
    Du Q; Liu Y; Song Y; Qin Y
    Front Microbiol; 2020; 11():597828. PubMed ID: 33381093
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Understanding the stress responses of Kluyveromyces marxianus after an arrest during high-temperature ethanol fermentation based on integration of RNA-Seq and metabolite data.
    Fu X; Li P; Zhang L; Li S
    Appl Microbiol Biotechnol; 2019 Mar; 103(6):2715-2729. PubMed ID: 30673809
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impaired uptake and/or utilization of leucine by Saccharomyces cerevisiae is suppressed by the SPT15-300 allele of the TATA-binding protein gene.
    Baerends RJ; Qiu JL; Rasmussen S; Nielsen HB; Brandt A
    Appl Environ Microbiol; 2009 Oct; 75(19):6055-61. PubMed ID: 19666729
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel constructed SPT15 mutagenesis library of Saccharomyces cerevisiae by using gTME technique for enhanced ethanol production.
    El-Rotail AAMM; Zhang L; Li Y; Liu SP; Shi GY
    AMB Express; 2017 Dec; 7(1):111. PubMed ID: 28582970
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expression of a mutated SPT15 gene in Saccharomyces cerevisiae enhances both cell growth and ethanol production in microaerobic batch, fed-batch, and simultaneous saccharification and fermentations.
    Seong YJ; Park H; Yang J; Kim SJ; Choi W; Kim KH; Park YC
    Appl Microbiol Biotechnol; 2017 May; 101(9):3567-3575. PubMed ID: 28168313
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of overexpression of transcription factors on the fermentation properties of Saccharomyces cerevisiae industrial strains.
    Hou L; Cao X; Wang C; Lu M
    Lett Appl Microbiol; 2009 Jul; 49(1):14-9. PubMed ID: 19413773
    [TBL] [Abstract][Full Text] [Related]  

  • 13.
    Mo W; Wang M; Zhan R; Yu Y; He Y; Lu H
    Biotechnol Biofuels; 2019; 12():63. PubMed ID: 30949239
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improvement of oxidative stress tolerance in Saccharomyces cerevisiae through global transcription machinery engineering.
    Zhao H; Li J; Han B; Li X; Chen J
    J Ind Microbiol Biotechnol; 2014 May; 41(5):869-78. PubMed ID: 24633583
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering yeast transcription machinery for improved ethanol tolerance and production.
    Alper H; Moxley J; Nevoigt E; Fink GR; Stephanopoulos G
    Science; 2006 Dec; 314(5805):1565-8. PubMed ID: 17158319
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ethanol production from xylose is highly increased by the Kluyveromyces marxianus mutant 17694-DH1.
    Kwon DH; Park JB; Hong E; Ha SJ
    Bioprocess Biosyst Eng; 2019 Jan; 42(1):63-70. PubMed ID: 30244424
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcriptome analysis of the thermotolerant yeast Kluyveromyces marxianus CCT 7735 under ethanol stress.
    Diniz RHS; Villada JC; Alvim MCT; Vidigal PMP; Vieira NM; Lamas-Maceiras M; Cerdán ME; González-Siso MI; Lahtvee PJ; da Silveira WB
    Appl Microbiol Biotechnol; 2017 Sep; 101(18):6969-6980. PubMed ID: 28776098
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physiological and transcriptome analyses of Kluyveromyces marxianus reveal adaptive traits in stress response.
    Sandoval-Nuñez D; Romero-Gutiérrez T; Gómez-Márquez C; Gshaedler A; Arellano-Plaza M; Amaya-Delgado L
    Appl Microbiol Biotechnol; 2023 Feb; 107(4):1421-1438. PubMed ID: 36651929
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Construction of flocculent Kluyveromyces marxianus strains suitable for high-temperature ethanol fermentation.
    Nonklang S; Ano A; Abdel-Banat BM; Saito Y; Hoshida H; Akada R
    Biosci Biotechnol Biochem; 2009 May; 73(5):1090-5. PubMed ID: 19420680
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The production of ethanol from lignocellulosic biomass by Kluyveromyces marxianus CICC 1727-5 and Spathaspora passalidarum ATCC MYA-4345.
    Du C; Li Y; Zhao X; Pei X; Yuan W; Bai F; Jiang Y
    Appl Microbiol Biotechnol; 2019 Mar; 103(6):2845-2855. PubMed ID: 30706114
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.