BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 30061931)

  • 1. The impact of hydrogen peroxide supply on LPMO activity and overall saccharification efficiency of a commercial cellulase cocktail.
    Müller G; Chylenski P; Bissaro B; Eijsink VGH; Horn SJ
    Biotechnol Biofuels; 2018; 11():209. PubMed ID: 30061931
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enzymatic degradation of sulfite-pulped softwoods and the role of LPMOs.
    Chylenski P; Petrović DM; Müller G; Dahlström M; Bengtsson O; Lersch M; Siika-Aho M; Horn SJ; Eijsink VGH
    Biotechnol Biofuels; 2017; 10():177. PubMed ID: 28702082
    [TBL] [Abstract][Full Text] [Related]  

  • 3. pH-Dependent Relationship between Catalytic Activity and Hydrogen Peroxide Production Shown via Characterization of a Lytic Polysaccharide Monooxygenase from
    Hegnar OA; Petrovic DM; Bissaro B; Alfredsen G; Várnai A; Eijsink VGH
    Appl Environ Microbiol; 2019 Mar; 85(5):. PubMed ID: 30578267
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In situ measurements of oxidation-reduction potential and hydrogen peroxide concentration as tools for revealing LPMO inactivation during enzymatic saccharification of cellulose.
    Kadić A; Várnai A; Eijsink VGH; Horn SJ; Lidén G
    Biotechnol Biofuels; 2021 Feb; 14(1):46. PubMed ID: 33602308
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The use of lytic polysaccharide monooxygenases in anaerobic digestion of lignocellulosic materials.
    Costa THF; Eijsink VGH; Horn SJ
    Biotechnol Biofuels; 2019; 12():270. PubMed ID: 31788026
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancing enzymatic saccharification yields of cellulose at high solid loadings by combining different LPMO activities.
    Angeltveit CF; Várnai A; Eijsink VGH; Horn SJ
    Biotechnol Biofuels Bioprod; 2024 Mar; 17(1):39. PubMed ID: 38461298
    [TBL] [Abstract][Full Text] [Related]  

  • 7. H
    Hansen LD; Eijsink VGH; Horn SJ; Várnai A
    Biotechnol Bioeng; 2023 Mar; 120(3):726-736. PubMed ID: 36471631
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Harnessing the potential of LPMO-containing cellulase cocktails poses new demands on processing conditions.
    Müller G; Várnai A; Johansen KS; Eijsink VG; Horn SJ
    Biotechnol Biofuels; 2015; 8():187. PubMed ID: 26609322
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Insights into the H
    Qin X; Yang K; Wang X; Tu T; Wang Y; Zhang J; Su X; Yao B; Huang H; Luo H
    J Agric Food Chem; 2023 May; 71(21):8104-8111. PubMed ID: 37204864
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synergistic Action of a Lytic Polysaccharide Monooxygenase and a Cellobiohydrolase from
    Ogunyewo OA; Randhawa A; Gupta M; Kaladhar VC; Verma PK; Yazdani SS
    Appl Environ Microbiol; 2020 Nov; 86(23):. PubMed ID: 32978122
    [TBL] [Abstract][Full Text] [Related]  

  • 11. LPMOs in cellulase mixtures affect fermentation strategies for lactic acid production from lignocellulosic biomass.
    Müller G; Kalyani DC; Horn SJ
    Biotechnol Bioeng; 2017 Mar; 114(3):552-559. PubMed ID: 27596285
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetic insights into the role of the reductant in H
    Kuusk S; Kont R; Kuusk P; Heering A; Sørlie M; Bissaro B; Eijsink VGH; Väljamäe P
    J Biol Chem; 2019 Feb; 294(5):1516-1528. PubMed ID: 30514757
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The liquid fraction from hydrothermal pretreatment of wheat straw provides lytic polysaccharide monooxygenases with both electrons and H
    Kont R; Pihlajaniemi V; Borisova AS; Aro N; Marjamaa K; Loogen J; Büchs J; Eijsink VGH; Kruus K; Väljamäe P
    Biotechnol Biofuels; 2019; 12():235. PubMed ID: 31624497
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigating the role of AA9 LPMOs in enzymatic hydrolysis of differentially steam-pretreated spruce.
    Caputo F; Tõlgo M; Naidjonoka P; Krogh KBRM; Novy V; Olsson L
    Biotechnol Biofuels Bioprod; 2023 Apr; 16(1):68. PubMed ID: 37076886
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of minimal enzyme cocktails for hydrolysis of sulfite-pulped lignocellulosic biomass.
    Chylenski P; Forsberg Z; Ståhlberg J; Várnai A; Lersch M; Bengtsson O; Sæbø S; Horn SJ; Eijsink VGH
    J Biotechnol; 2017 Mar; 246():16-23. PubMed ID: 28219736
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Redox processes acidify and decarboxylate steam-pretreated lignocellulosic biomass and are modulated by LPMO and catalase.
    Peciulyte A; Samuelsson L; Olsson L; McFarland KC; Frickmann J; Østergård L; Halvorsen R; Scott BR; Johansen KS
    Biotechnol Biofuels; 2018; 11():165. PubMed ID: 29946356
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In-situ lignin drives lytic polysaccharide monooxygenases to enhance enzymatic saccharification.
    Ni H; Li M; Li F; Wang L; Xie S; Zhang X; Yu H
    Int J Biol Macromol; 2020 Oct; 161():308-314. PubMed ID: 32526300
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unraveling the roles of the reductant and free copper ions in LPMO kinetics.
    Stepnov AA; Forsberg Z; Sørlie M; Nguyen GS; Wentzel A; Røhr ÅK; Eijsink VGH
    Biotechnol Biofuels; 2021 Jan; 14(1):28. PubMed ID: 33478537
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fast and Specific Peroxygenase Reactions Catalyzed by Fungal Mono-Copper Enzymes.
    Rieder L; Stepnov AA; Sørlie M; Eijsink VGH
    Biochemistry; 2021 Nov; 60(47):3633-3643. PubMed ID: 34738811
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A thermostable bacterial lytic polysaccharide monooxygenase with high operational stability in a wide temperature range.
    Tuveng TR; Jensen MS; Fredriksen L; Vaaje-Kolstad G; Eijsink VGH; Forsberg Z
    Biotechnol Biofuels; 2020 Nov; 13(1):194. PubMed ID: 33292445
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.