These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
246 related articles for article (PubMed ID: 30061931)
1. The impact of hydrogen peroxide supply on LPMO activity and overall saccharification efficiency of a commercial cellulase cocktail. Müller G; Chylenski P; Bissaro B; Eijsink VGH; Horn SJ Biotechnol Biofuels; 2018; 11():209. PubMed ID: 30061931 [TBL] [Abstract][Full Text] [Related]
2. Enzymatic degradation of sulfite-pulped softwoods and the role of LPMOs. Chylenski P; Petrović DM; Müller G; Dahlström M; Bengtsson O; Lersch M; Siika-Aho M; Horn SJ; Eijsink VGH Biotechnol Biofuels; 2017; 10():177. PubMed ID: 28702082 [TBL] [Abstract][Full Text] [Related]
3. pH-Dependent Relationship between Catalytic Activity and Hydrogen Peroxide Production Shown via Characterization of a Lytic Polysaccharide Monooxygenase from Hegnar OA; Petrovic DM; Bissaro B; Alfredsen G; Várnai A; Eijsink VGH Appl Environ Microbiol; 2019 Mar; 85(5):. PubMed ID: 30578267 [TBL] [Abstract][Full Text] [Related]
4. In situ measurements of oxidation-reduction potential and hydrogen peroxide concentration as tools for revealing LPMO inactivation during enzymatic saccharification of cellulose. Kadić A; Várnai A; Eijsink VGH; Horn SJ; Lidén G Biotechnol Biofuels; 2021 Feb; 14(1):46. PubMed ID: 33602308 [TBL] [Abstract][Full Text] [Related]
5. The use of lytic polysaccharide monooxygenases in anaerobic digestion of lignocellulosic materials. Costa THF; Eijsink VGH; Horn SJ Biotechnol Biofuels; 2019; 12():270. PubMed ID: 31788026 [TBL] [Abstract][Full Text] [Related]
6. Enhancing enzymatic saccharification yields of cellulose at high solid loadings by combining different LPMO activities. Angeltveit CF; Várnai A; Eijsink VGH; Horn SJ Biotechnol Biofuels Bioprod; 2024 Mar; 17(1):39. PubMed ID: 38461298 [TBL] [Abstract][Full Text] [Related]
8. Harnessing the potential of LPMO-containing cellulase cocktails poses new demands on processing conditions. Müller G; Várnai A; Johansen KS; Eijsink VG; Horn SJ Biotechnol Biofuels; 2015; 8():187. PubMed ID: 26609322 [TBL] [Abstract][Full Text] [Related]
9. Insights into the H Qin X; Yang K; Wang X; Tu T; Wang Y; Zhang J; Su X; Yao B; Huang H; Luo H J Agric Food Chem; 2023 May; 71(21):8104-8111. PubMed ID: 37204864 [TBL] [Abstract][Full Text] [Related]
10. Synergistic Action of a Lytic Polysaccharide Monooxygenase and a Cellobiohydrolase from Ogunyewo OA; Randhawa A; Gupta M; Kaladhar VC; Verma PK; Yazdani SS Appl Environ Microbiol; 2020 Nov; 86(23):. PubMed ID: 32978122 [TBL] [Abstract][Full Text] [Related]
11. LPMOs in cellulase mixtures affect fermentation strategies for lactic acid production from lignocellulosic biomass. Müller G; Kalyani DC; Horn SJ Biotechnol Bioeng; 2017 Mar; 114(3):552-559. PubMed ID: 27596285 [TBL] [Abstract][Full Text] [Related]
12. Kinetic insights into the role of the reductant in H Kuusk S; Kont R; Kuusk P; Heering A; Sørlie M; Bissaro B; Eijsink VGH; Väljamäe P J Biol Chem; 2019 Feb; 294(5):1516-1528. PubMed ID: 30514757 [TBL] [Abstract][Full Text] [Related]
13. The liquid fraction from hydrothermal pretreatment of wheat straw provides lytic polysaccharide monooxygenases with both electrons and H Kont R; Pihlajaniemi V; Borisova AS; Aro N; Marjamaa K; Loogen J; Büchs J; Eijsink VGH; Kruus K; Väljamäe P Biotechnol Biofuels; 2019; 12():235. PubMed ID: 31624497 [TBL] [Abstract][Full Text] [Related]
14. Investigating the role of AA9 LPMOs in enzymatic hydrolysis of differentially steam-pretreated spruce. Caputo F; Tõlgo M; Naidjonoka P; Krogh KBRM; Novy V; Olsson L Biotechnol Biofuels Bioprod; 2023 Apr; 16(1):68. PubMed ID: 37076886 [TBL] [Abstract][Full Text] [Related]
15. Development of minimal enzyme cocktails for hydrolysis of sulfite-pulped lignocellulosic biomass. Chylenski P; Forsberg Z; Ståhlberg J; Várnai A; Lersch M; Bengtsson O; Sæbø S; Horn SJ; Eijsink VGH J Biotechnol; 2017 Mar; 246():16-23. PubMed ID: 28219736 [TBL] [Abstract][Full Text] [Related]
16. Redox processes acidify and decarboxylate steam-pretreated lignocellulosic biomass and are modulated by LPMO and catalase. Peciulyte A; Samuelsson L; Olsson L; McFarland KC; Frickmann J; Østergård L; Halvorsen R; Scott BR; Johansen KS Biotechnol Biofuels; 2018; 11():165. PubMed ID: 29946356 [TBL] [Abstract][Full Text] [Related]
17. In-situ lignin drives lytic polysaccharide monooxygenases to enhance enzymatic saccharification. Ni H; Li M; Li F; Wang L; Xie S; Zhang X; Yu H Int J Biol Macromol; 2020 Oct; 161():308-314. PubMed ID: 32526300 [TBL] [Abstract][Full Text] [Related]
18. Unraveling the roles of the reductant and free copper ions in LPMO kinetics. Stepnov AA; Forsberg Z; Sørlie M; Nguyen GS; Wentzel A; Røhr ÅK; Eijsink VGH Biotechnol Biofuels; 2021 Jan; 14(1):28. PubMed ID: 33478537 [TBL] [Abstract][Full Text] [Related]
19. Fast and Specific Peroxygenase Reactions Catalyzed by Fungal Mono-Copper Enzymes. Rieder L; Stepnov AA; Sørlie M; Eijsink VGH Biochemistry; 2021 Nov; 60(47):3633-3643. PubMed ID: 34738811 [TBL] [Abstract][Full Text] [Related]
20. A thermostable bacterial lytic polysaccharide monooxygenase with high operational stability in a wide temperature range. Tuveng TR; Jensen MS; Fredriksen L; Vaaje-Kolstad G; Eijsink VGH; Forsberg Z Biotechnol Biofuels; 2020 Nov; 13(1):194. PubMed ID: 33292445 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]