BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 30062338)

  • 1. Development of an electrochemical surface-enhanced Raman spectroscopy (EC-SERS) fabric-based plasmonic sensor for point-of-care diagnostics.
    Bindesri SD; Alhatab DS; Brosseau CL
    Analyst; 2018 Aug; 143(17):4128-4135. PubMed ID: 30062338
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The development of "fab-chips" as low-cost, sensitive surface-enhanced Raman spectroscopy (SERS) substrates for analytical applications.
    Robinson AM; Zhao L; Shah Alam MY; Bhandari P; Harroun SG; Dendukuri D; Blackburn J; Brosseau CL
    Analyst; 2015 Feb; 140(3):779-85. PubMed ID: 25460852
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sweat Sensor Based on Wearable Janus Textiles for Sweat Collection and Microstructured Optical Fiber for Surface-Enhanced Raman Scattering Analysis.
    Han Y; Fang X; Li H; Zha L; Guo J; Zhang X
    ACS Sens; 2023 Dec; 8(12):4774-4781. PubMed ID: 38051949
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of an electrochemical surface-enhanced Raman spectroscopy (EC-SERS) aptasensor for direct detection of DNA hybridization.
    Karaballi RA; Nel A; Krishnan S; Blackburn J; Brosseau CL
    Phys Chem Chem Phys; 2015 Sep; 17(33):21356-63. PubMed ID: 25780805
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reusable Surface-Enhanced Raman Spectroscopy Membranes and Textiles via Template-Assisted Self-Assembly and Micro/Nanoimprinting.
    Garg A; Nam W; Zhou W
    ACS Appl Mater Interfaces; 2020 Dec; 12(50):56290-56299. PubMed ID: 33283507
    [TBL] [Abstract][Full Text] [Related]  

  • 6. UV Curable Conductive Ink for the Fabrication of Textile-Based Conductive Circuits and Wearable UHF RFID Tags.
    Hong H; Hu J; Yan X
    ACS Appl Mater Interfaces; 2019 Jul; 11(30):27318-27326. PubMed ID: 31284718
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative detection of uric acid by electrochemical-surface enhanced Raman spectroscopy using a multilayered Au/Ag substrate.
    Zhao L; Blackburn J; Brosseau CL
    Anal Chem; 2015 Jan; 87(1):441-7. PubMed ID: 25483146
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A wearable screen-printed SERS array sensor on fire-retardant fibre gloves for on-site environmental emergency monitoring.
    Li XJ; Li YT; Gu HX; Xue PF; Qin LX; Han S
    Anal Methods; 2022 Feb; 14(8):781-788. PubMed ID: 35083987
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabric-Based Wearable Dry Electrodes for Body Surface Biopotential Recording.
    Yokus MA; Jur JS
    IEEE Trans Biomed Eng; 2016 Feb; 63(2):423-30. PubMed ID: 26241969
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dual-Approach Electrochemical Surface-Enhanced Raman Scattering Detection of
    Hendricks-Leukes NR; Jonas MR; Mlamla ZC; Smith M; Blackburn JM
    ACS Sens; 2022 May; 7(5):1403-1418. PubMed ID: 35561012
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrated EC-SERS Chip with Uniform Nanostructured EC-SERS Active Working Electrode for Rapid Detection of Uric Acid.
    Huang CY; Hsiao HC
    Sensors (Basel); 2020 Dec; 20(24):. PubMed ID: 33321761
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Screen Printing Carbon Nanotubes Textiles Antennas for Smart Wearables.
    Ibanez Labiano I; Arslan D; Ozden Yenigun E; Asadi A; Cebeci H; Alomainy A
    Sensors (Basel); 2021 Jul; 21(14):. PubMed ID: 34300678
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrochemical-surface enhanced Raman spectroscopy (E-SERS) of uric acid: a potential rapid diagnostic method for early preeclampsia detection.
    Goodall BL; Robinson AM; Brosseau CL
    Phys Chem Chem Phys; 2013 Feb; 15(5):1382-8. PubMed ID: 23187309
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Droplet based microfluidics: spectroscopic characterization of levofloxacin and its SERS detection.
    Hidi IJ; Jahn M; Weber K; Cialla-May D; Popp J
    Phys Chem Chem Phys; 2015 Sep; 17(33):21236-42. PubMed ID: 25613024
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multifunctional and Ultrasensitive-Reduced Graphene Oxide and Pen Ink/Polyvinyl Alcohol-Decorated Modal/Spandex Fabric for High-Performance Wearable Sensors.
    Bi S; Hou L; Dong W; Lu Y
    ACS Appl Mater Interfaces; 2021 Jan; 13(1):2100-2109. PubMed ID: 33347284
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Woven electrochemical fabric-based test sensors (WEFTS): a new class of multiplexed electrochemical sensors.
    Choudhary T; Rajamanickam GP; Dendukuri D
    Lab Chip; 2015 May; 15(9):2064-72. PubMed ID: 25805000
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Batch fabrication of disposable screen printed SERS arrays.
    Qu LL; Li DW; Xue JQ; Zhai WL; Fossey JS; Long YT
    Lab Chip; 2012 Mar; 12(5):876-81. PubMed ID: 22173817
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrochemical Surface-Enhanced Raman Spectroscopy as a Platform for Bacterial Detection and Identification.
    Lynk TP; Sit CS; Brosseau CL
    Anal Chem; 2018 Nov; 90(21):12639-12646. PubMed ID: 30350616
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Textile-based electrochemical sensors and their applications.
    Sinha A; Dhanjai ; Stavrakis AK; Stojanović GM
    Talanta; 2022 Jul; 244():123425. PubMed ID: 35397323
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A wearable 12-lead ECG acquisition system with fabric electrodes.
    Haoshi Zhang ; Lan Tian ; Huiyang Lu ; Ming Zhou ; Haiqing Zou ; Peng Fang ; Fuan Yao ; Guanglin Li
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():4439-4442. PubMed ID: 29060882
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.