These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 30062734)

  • 1. Authigenesis of biomorphic apatite particles from Benguela upwelling zone sediments off Namibia: The role of organic matter in sedimentary apatite nucleation and growth.
    Mänd K; Kirsimäe K; Lepland A; Crosby CH; Bailey JV; Konhauser KO; Wirth R; Schreiber A; Lumiste K
    Geobiology; 2018 Nov; 16(6):640-658. PubMed ID: 30062734
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microbial communities associated with phosphogenic sediments and phosphoclast-associated DNA of the Benguela upwelling system.
    Zoss R; Medina Ferrer F; Flood BE; Jones DS; Louw DC; Bailey J
    Geobiology; 2019 Jan; 17(1):76-90. PubMed ID: 30369004
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Filamentous sulfur bacteria preserved in modern and ancient phosphatic sediments: implications for the role of oxygen and bacteria in phosphogenesis.
    Bailey JV; Corsetti FA; Greene SE; Crosby CH; Liu P; Orphan VJ
    Geobiology; 2013 Sep; 11(5):397-405. PubMed ID: 23786451
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carotenoid biomarkers in Namibian shelf sediments: Anoxygenic photosynthesis during sulfide eruptions in the Benguela Upwelling System.
    Ma J; French KL; Cui X; Bryant DA; Summons RE
    Proc Natl Acad Sci U S A; 2021 Jul; 118(29):. PubMed ID: 34272281
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced contaminant desorption induced by phosphate mineral additions to sediment.
    Kaplan DI; Knox AS
    Environ Sci Technol; 2004 Jun; 38(11):3153-60. PubMed ID: 15224749
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A review of phosphate mineral nucleation in biology and geobiology.
    Omelon S; Ariganello M; Bonucci E; Grynpas M; Nanci A
    Calcif Tissue Int; 2013 Oct; 93(4):382-96. PubMed ID: 24077874
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Organic matter remineralization predominates phosphorus cycling in the mid-Bay sediments in the Chesapeake Bay.
    Joshi SR; Kukkadapu RK; Burdige DJ; Bowden ME; Sparks DL; Jaisi DP
    Environ Sci Technol; 2015 May; 49(10):5887-96. PubMed ID: 25633477
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphorus removal from wastewater by mineral apatite.
    Bellier N; Chazarenc F; Comeau Y
    Water Res; 2006 Aug; 40(15):2965-71. PubMed ID: 16828841
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distribution and partitioning of phosphorus in solid waste and sediments from drainage canals in the industrial belt of Delhi, India.
    Moturi MC; Rawat M; Subramanian V
    Chemosphere; 2005 Jul; 60(2):237-44. PubMed ID: 15914243
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phosphatized tungsten-metabolizing coccoid microbes interpreted from oil shale of an Eocene lake, Green River Formation, Utah, USA.
    Keighley D; Boonsue S; Hall D
    Geobiology; 2018 Nov; 16(6):610-627. PubMed ID: 30102836
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Living phosphatic stromatolites in a low-phosphorus environment: Implications for the use of phosphorus as a proxy for phosphate levels in paleo-systems.
    Büttner SH; Isemonger EW; Isaacs M; van Niekerk D; Sipler RE; Dorrington RA
    Geobiology; 2021 Jan; 19(1):35-47. PubMed ID: 33067916
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Phosphorus forms of the suspended particulate matter in the Yellow River downstream during water and sediment regulation 2008].
    Wei JF; Chen HT; Liu YL; Shan K; Yao QZ; He HJ; Yu ZG
    Huan Jing Ke Xue; 2011 Feb; 32(2):368-74. PubMed ID: 21528556
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence of oxygenic phototrophy in ancient phosphatic stromatolites from the Paleoproterozoic Vindhyan and Aravalli Supergroups, India.
    Sallstedt T; Bengtson S; Broman C; Crill PM; Canfield DE
    Geobiology; 2018 Mar; 16(2):139-159. PubMed ID: 29380943
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of microbes in the formation of modern and ancient phosphatic mineral deposits.
    Crosby CH; Bailey JV
    Front Microbiol; 2012; 3():241. PubMed ID: 22783245
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sustainable phosphorus management in soil using bone apatite.
    Biswas PP; Turner-Walker G; Rathod J; Liang B; Wang CC; Lee YC; Sheu HS
    J Environ Manage; 2022 Mar; 305():114344. PubMed ID: 34953223
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Large sulfur bacteria and the formation of phosphorite.
    Schulz HN; Schulz HD
    Science; 2005 Jan; 307(5708):416-8. PubMed ID: 15662012
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characteristics of various forms of phosphorus and their relationships in the sediments of Haizi Lake, China.
    Bi D; Guo X; Cai Z; Gao X; Li Y; Guo J; Long X; Zhong Z; Liang Y
    Water Sci Technol; 2012; 66(12):2688-94. PubMed ID: 23109587
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phosphorus retention by granulated apatite: assessing maximum retention capacity, kinetics and retention processes.
    Delgado-González L; Lartiges B; Gautier M; Troesch S; Molle P
    Water Sci Technol; 2021 Feb; 83(4):792-802. PubMed ID: 33617487
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphorus mobility in dam reservoir affected by redox oscillations: An experimental study.
    Rapin A; Grybos M; Rabiet M; Mourier B; Deluchat V
    J Environ Sci (China); 2019 Mar; 77():250-263. PubMed ID: 30573089
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An NMR Study of Biomimetic Fluorapatite - Gelatine Mesocrystals.
    Vyalikh A; Simon P; Rosseeva E; Buder J; Scheler U; Kniep R
    Sci Rep; 2015 Oct; 5():15797. PubMed ID: 26515127
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.