BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 30062758)

  • 1. Structural and functional analyses of the cellulase transcription regulator CelR.
    Fu Y; Yeom SJ; Kwon KK; Hwang J; Kim H; Woo EJ; Lee DH; Lee SG
    FEBS Lett; 2018 Aug; 592(16):2776-2785. PubMed ID: 30062758
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A celR mutation affecting transcription of cellulase genes in Thermobifida fusca.
    Spiridonov NA; Wilson DB
    J Bacteriol; 2000 Jan; 182(1):252-5. PubMed ID: 10613893
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development and application of a PCR-targeted gene disruption method for studying CelR function in Thermobifida fusca.
    Deng Y; Fong SS
    Appl Environ Microbiol; 2010 Apr; 76(7):2098-106. PubMed ID: 20097808
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization and cloning of celR, a transcriptional regulator of cellulase genes from Thermomonospora fusca.
    Spiridonov NA; Wilson DB
    J Biol Chem; 1999 May; 274(19):13127-32. PubMed ID: 10224066
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CelR-mediated activation of the cellobiose-utilization gene cluster in Streptococcus pneumoniae.
    Shafeeq S; Kloosterman TG; Kuipers OP
    Microbiology (Reading); 2011 Oct; 157(Pt 10):2854-2861. PubMed ID: 21778207
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genomics of aerobic cellulose utilization systems in actinobacteria.
    Anderson I; Abt B; Lykidis A; Klenk HP; Kyrpides N; Ivanova N
    PLoS One; 2012; 7(6):e39331. PubMed ID: 22723998
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PTS regulation domain-containing transcriptional activator CelR and sigma factor σ(54) control cellobiose utilization in Clostridium acetobutylicum.
    Nie X; Yang B; Zhang L; Gu Y; Yang S; Jiang W; Yang C
    Mol Microbiol; 2016 Apr; 100(2):289-302. PubMed ID: 26691835
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A signaling pathway involving the diguanylate cyclase CelR and the response regulator DivK controls cellulose synthesis in Agrobacterium tumefaciens.
    Barnhart DM; Su S; Farrand SK
    J Bacteriol; 2014 Mar; 196(6):1257-74. PubMed ID: 24443526
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of a novel cellulase biosensor that detects crystalline cellulose hydrolysis using a transcriptional regulator.
    Kwon KK; Yeom SJ; Lee DH; Jeong KJ; Lee SG
    Biochem Biophys Res Commun; 2018 Jan; 495(1):1328-1334. PubMed ID: 29180013
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A non-linear deterministic model for regulation of diauxic lag on cellobiose by the pneumococcal multidomain transcriptional regulator CelR.
    Boianelli A; Bidossi A; Gualdi L; Mulas L; Mocenni C; Pozzi G; Vicino A; Oggioni MR
    PLoS One; 2012; 7(10):e47393. PubMed ID: 23110070
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcriptional regulation of cellobiose utilization by PRD-domain containing Sigma54-dependent transcriptional activator (CelR) and catabolite control protein A (CcpA) in
    Zhang L; Xu H; Cheng H; Song F; Zhang J; Peng Q
    Front Microbiol; 2024; 15():1160472. PubMed ID: 38357353
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcriptional regulation of the cellobiose operon of Streptococcus mutans.
    Zeng L; Burne RA
    J Bacteriol; 2009 Apr; 191(7):2153-62. PubMed ID: 19168613
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation and characterization of Thermobifida fusca carbohydrate-binding module proteins E7 and E8.
    Moser F; Irwin D; Chen S; Wilson DB
    Biotechnol Bioeng; 2008 Aug; 100(6):1066-77. PubMed ID: 18553392
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel transcriptional regulator, ClbR, controls the cellobiose- and cellulose-responsive induction of cellulase and xylanase genes regulated by two distinct signaling pathways in Aspergillus aculeatus.
    Kunitake E; Tani S; Sumitani J; Kawaguchi T
    Appl Microbiol Biotechnol; 2013 Mar; 97(5):2017-28. PubMed ID: 22851016
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystal structure of the DNA-binding domain of the LysR-type transcriptional regulator CbnR in complex with a DNA fragment of the recognition-binding site in the promoter region.
    Koentjoro MP; Adachi N; Senda M; Ogawa N; Senda T
    FEBS J; 2018 Mar; 285(5):977-989. PubMed ID: 29323785
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Studies of Thermobifida fusca plant cell wall degrading enzymes.
    Wilson DB
    Chem Rec; 2004; 4(2):72-82. PubMed ID: 15073875
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expression of a Cellobiose Phosphorylase from Thermotoga maritima in Caldicellulosiruptor bescii Improves the Phosphorolytic Pathway and Results in a Dramatic Increase in Cellulolytic Activity.
    Kim SK; Himmel ME; Bomble YJ; Westpheling J
    Appl Environ Microbiol; 2018 Feb; 84(3):. PubMed ID: 29101202
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proteomic and transcriptomic analysis of extracellular proteins and mRNA levels in Thermobifida fusca grown on cellobiose and glucose.
    Chen S; Wilson DB
    J Bacteriol; 2007 Sep; 189(17):6260-5. PubMed ID: 17601791
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel substitutions in the sigma54-dependent activator DctD that increase dependence on upstream activation sequences or uncouple ATP hydrolysis from transcriptional activation.
    Xu H; Kelly MT; Nixon BT; Hoover TR
    Mol Microbiol; 2004 Oct; 54(1):32-44. PubMed ID: 15458403
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystal structure of the human LRH-1 DBD-DNA complex reveals Ftz-F1 domain positioning is required for receptor activity.
    Solomon IH; Hager JM; Safi R; McDonnell DP; Redinbo MR; Ortlund EA
    J Mol Biol; 2005 Dec; 354(5):1091-102. PubMed ID: 16289203
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.