These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 30062769)

  • 1. Electrochromic Os(II)-Based Metallo-Supramolecular Polymers.
    Bera MK; Chakraborty C; Rana U; Higuchi M
    Macromol Rapid Commun; 2018 Nov; 39(22):e1800415. PubMed ID: 30062769
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-dimensional Fe(II)-based metallo-supramolecular polymers with electrochromic properties of quick switching, large contrast, and high coloration efficiency.
    Hu CW; Sato T; Zhang J; Moriyama S; Higuchi M
    ACS Appl Mater Interfaces; 2014 Jun; 6(12):9118-25. PubMed ID: 24840579
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metal Coordination Stoichiometry Controlled Formation of Linear and Hyperbranched Supramolecular Polymers.
    Lin C; Xu L; Huang L; Chen J; Liu Y; Ma Y; Ye F; Qiu H; He T; Yin S
    Macromol Rapid Commun; 2016 Sep; 37(17):1453-9. PubMed ID: 27377646
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two-dimensional metallo-supramolecular polymerization: toward size-controlled multi-strand polymers.
    Adisoejoso J; Li Y; Liu J; Liu PN; Lin N
    J Am Chem Soc; 2012 Nov; 134(45):18526-9. PubMed ID: 23075304
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-Performance Electrochromic Devices Based on Poly[Ni(salen)]-Type Polymer Films.
    Nunes M; Araújo M; Fonseca J; Moura C; Hillman R; Freire C
    ACS Appl Mater Interfaces; 2016 Jun; 8(22):14231-43. PubMed ID: 27175794
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The use of (metallo-)supramolecular initiators for living/controlled polymerization techniques.
    Hoogenboom R; Schubert US
    Chem Soc Rev; 2006 Jul; 35(7):622-9. PubMed ID: 16791333
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chiral binaphthylbisbipyridine-based copper(I) coordination polymer gels as supramolecular catalysts.
    He Y; Bian Z; Kang C; Cheng Y; Gao L
    Chem Commun (Camb); 2010 May; 46(20):3532-4. PubMed ID: 20582353
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A double-stranded helix by complexation of two polymer chains with a helical supramolecular assembly.
    Sugimoto T; Suzuki T; Shinkai S; Sada K
    J Am Chem Soc; 2007 Jan; 129(2):270-1. PubMed ID: 17212395
    [No Abstract]   [Full Text] [Related]  

  • 9. High intensity focused ultrasound responsive metallo-supramolecular block copolymer micelles.
    Liang B; Tong R; Wang Z; Guo S; Xia H
    Langmuir; 2014 Aug; 30(31):9524-32. PubMed ID: 25072274
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Thiophene-Containing Conductive Metallopolymer Using an Fe(II) Bis(terpyridine) Core for Electrochromic Materials.
    Liang Y; Strohecker D; Lynch V; Holliday BJ; Jones RA
    ACS Appl Mater Interfaces; 2016 Dec; 8(50):34568-34580. PubMed ID: 27936553
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Printed Multicolor High-Contrast Electrochromic Devices.
    Chen BH; Kao SY; Hu CW; Higuchi M; Ho KC; Liao YC
    ACS Appl Mater Interfaces; 2015 Nov; 7(45):25069-76. PubMed ID: 26496422
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Controlling polymer properties through dynamic metal-ligand interactions: supramolecular cruciforms made easy.
    Gerhardt WW; Zucchero AJ; South CR; Bunz UH; Weck M
    Chemistry; 2007; 13(16):4467-74. PubMed ID: 17343290
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Black-to-Transmissive Electrochromism with Visible-to-Near-Infrared Switching of a Co(II)-Based Metallo-Supramolecular Polymer for Smart Window and Digital Signage Applications.
    Hsu CY; Zhang J; Sato T; Moriyama S; Higuchi M
    ACS Appl Mater Interfaces; 2015 Aug; 7(33):18266-72. PubMed ID: 26225623
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chitosan-cross-linked osmium polymer composites as an efficient platform for electrochemical biosensors.
    Jirimali HD; Nagarale RK; Lee JM; Saravanakumar D; Shin W
    Chemphyschem; 2013 Jul; 14(10):2232-6. PubMed ID: 23674401
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Star-like supramolecular polymers fabricated by a Keplerate cluster with cationic terminated polymers and their self-assembly into vesicles.
    Zhang Q; He L; Wang H; Zhang C; Liu W; Bu W
    Chem Commun (Camb); 2012 Jul; 48(56):7067-9. PubMed ID: 22683742
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Organometallic ruthenium and osmium compounds of pyridin-2- and -4-ones as potential anticancer agents.
    Henke H; Kandioller W; Hanif M; Keppler BK; Hartinger CG
    Chem Biodivers; 2012 Sep; 9(9):1718-27. PubMed ID: 22976964
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-Healing in Supramolecular Polymers.
    Campanella A; Döhler D; Binder WH
    Macromol Rapid Commun; 2018 Sep; 39(17):e1700739. PubMed ID: 29337415
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hierarchical NiO microflake films with high coloration efficiency, cyclic stability and low power consumption for applications in a complementary electrochromic device.
    Ma D; Shi G; Wang H; Zhang Q; Li Y
    Nanoscale; 2013 Jun; 5(11):4808-15. PubMed ID: 23613080
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrazone-based switches, metallo-assemblies and sensors.
    Su X; Aprahamian I
    Chem Soc Rev; 2014 Mar; 43(6):1963-81. PubMed ID: 24429467
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Redox electrodeposition polymers: adaptation of the redox potential of polymer-bound Os complexes for bioanalytical applications.
    Guschin DA; Castillo J; Dimcheva N; Schuhmann W
    Anal Bioanal Chem; 2010 Oct; 398(4):1661-73. PubMed ID: 20652686
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.