These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 30062885)

  • 1. Reversibly Cross-linkable Bottlebrush Polymers as Pressure-Sensitive Adhesives.
    Arrington KJ; Radzinski SC; Drummey KJ; Long TE; Matson JB
    ACS Appl Mater Interfaces; 2018 Aug; 10(31):26662-26668. PubMed ID: 30062885
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation of Bottlebrush Polymers via a One-Pot Ring-Opening Polymerization (ROP) and Ring-Opening Metathesis Polymerization (ROMP) Grafting-Through Strategy.
    Radzinski SC; Foster JC; Matson JB
    Macromol Rapid Commun; 2016 Apr; 37(7):616-21. PubMed ID: 26847467
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bottlebrush Polymer Synthesis by Ring-Opening Metathesis Polymerization: The Significance of the Anchor Group.
    Radzinski SC; Foster JC; Chapleski RC; Troya D; Matson JB
    J Am Chem Soc; 2016 Jun; 138(22):6998-7004. PubMed ID: 27219866
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two-Step Divergent Synthesis of Monodisperse and Ultra-Long Bottlebrush Polymers from an Easily Purifiable ROMP Monomer.
    Yamauchi Y; Horimoto NN; Yamada K; Matsushita Y; Takeuchi M; Ishida Y
    Angew Chem Int Ed Engl; 2021 Jan; 60(3):1528-1534. PubMed ID: 33058482
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On-Demand Cross-Linkable Bottlebrush Polymers for Voltage-Driven Artificial Muscles.
    Adeli Y; Owusu F; Nüesch FA; Opris DM
    ACS Appl Mater Interfaces; 2023 Apr; 15(16):20410-20420. PubMed ID: 37042624
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A UV-Cleavable Bottlebrush Polymer with o-Nitrobenzyl-Linked Side Chains.
    Zhu W; Zhang L; Chen Y; Zhang K
    Macromol Rapid Commun; 2017 Jun; 38(11):. PubMed ID: 28321947
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular Weight Dependence of Zero-Shear Viscosity in Atactic Polypropylene Bottlebrush Polymers.
    Dalsin SJ; Hillmyer MA; Bates FS
    ACS Macro Lett; 2014 May; 3(5):423-427. PubMed ID: 35590775
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Core-Shell Gyroid in ABC Bottlebrush Block Terpolymers.
    Cui S; Zhang B; Shen L; Bates FS; Lodge TP
    J Am Chem Soc; 2022 Nov; 144(47):21719-21727. PubMed ID: 36379011
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mikto-Brush-Arm Star Polymers via Cross-Linking of Dissimilar Bottlebrushes: Synthesis and Solution Morphologies.
    Shibuya Y; Nguyen HV; Johnson JA
    ACS Macro Lett; 2017 Sep; 6(9):963-968. PubMed ID: 35650899
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparative study of thermodynamic, conformational, and structural properties of bottlebrush with star and ring polymer melts.
    Chremos A; Douglas JF
    J Chem Phys; 2018 Jul; 149(4):044904. PubMed ID: 30068167
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ring-Opening Metathesis Polymerization for the Synthesis of Terpenoid-Based Pressure-Sensitive Adhesives.
    Engelen S; Droesbeke M; Aksakal R; Du Prez FE
    ACS Macro Lett; 2022 Dec; 11(12):1378-1383. PubMed ID: 36454687
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Control of Grafting Density and Distribution in Graft Polymers by Living Ring-Opening Metathesis Copolymerization.
    Lin TP; Chang AB; Chen HY; Liberman-Martin AL; Bates CM; Voegtle MJ; Bauer CA; Grubbs RH
    J Am Chem Soc; 2017 Mar; 139(10):3896-3903. PubMed ID: 28221030
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tailored silyl ether monomers enable backbone-degradable polynorbornene-based linear, bottlebrush and star copolymers through ROMP.
    Shieh P; Nguyen HV; Johnson JA
    Nat Chem; 2019 Dec; 11(12):1124-1132. PubMed ID: 31659310
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanoporous poly(3-hexylthiophene) thin film structures from self-organization of a tunable molecular bottlebrush scaffold.
    Ahn SK; Carrillo JY; Keum JK; Chen J; Uhrig D; Lokitz BS; Sumpter BG; Michael Kilbey S
    Nanoscale; 2017 Jun; 9(21):7071-7080. PubMed ID: 28422265
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploring the Structural Diversity of DNA Bottlebrush Polymers Using an Oligonucleotide Macromonomer Approach.
    Lu H; Cai J; Fang Y; Ren M; Tan X; Jia F; Wang D; Zhang K
    Macromolecules; 2022 Mar; 55(6):2235-2242. PubMed ID: 36187461
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermoresponsive PNIPAAM bottlebrush polymers with tailored side-chain length and end-group structure.
    Li X; ShamsiJazeyi H; Pesek SL; Agrawal A; Hammouda B; Verduzco R
    Soft Matter; 2014 Mar; 10(12):2008-15. PubMed ID: 24652160
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis of stereoregular polymers through ring-opening metathesis polymerization.
    Schrock RR
    Acc Chem Res; 2014 Aug; 47(8):2457-66. PubMed ID: 24905960
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design, Synthesis, and Self-Assembly of Janus Bottlebrush Polymers.
    Chen K; Hu X; Zhu N; Guo K
    Macromol Rapid Commun; 2020 Oct; 41(20):e2000357. PubMed ID: 32844547
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cationic Bottlebrush Polymers Outperform Linear Polycation Analogues for pDNA Delivery and Gene Expression.
    Dalal RJ; Kumar R; Ohnsorg M; Brown M; Reineke TM
    ACS Macro Lett; 2021 Jul; 10(7):886-893. PubMed ID: 35549207
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis and characterization of poly(ethylene glycol) bottlebrush networks via ring-opening metathesis polymerization.
    Clarke BR; Tew GN
    J Polym Sci (2020); 2022 May; 60(9):1501-1510. PubMed ID: 35967758
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.