These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 30062893)

  • 1. Ultrasensitive Displacement Noise Measurement of Carbon Nanotube Mechanical Resonators.
    de Bonis SL; Urgell C; Yang W; Samanta C; Noury A; Vergara-Cruz J; Dong Q; Jin Y; Bachtold A
    Nano Lett; 2018 Aug; 18(8):5324-5328. PubMed ID: 30062893
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrasensitive force detection with a nanotube mechanical resonator.
    Moser J; Güttinger J; Eichler A; Esplandiu MJ; Liu DE; Dykman MI; Bachtold A
    Nat Nanotechnol; 2013 Jul; 8(7):493-6. PubMed ID: 23748195
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Real-Time Measurement of Nanotube Resonator Fluctuations in an Electron Microscope.
    Tsioutsios I; Tavernarakis A; Osmond J; Verlot P; Bachtold A
    Nano Lett; 2017 Mar; 17(3):1748-1755. PubMed ID: 28186773
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mass Sensing for the Advanced Fabrication of Nanomechanical Resonators.
    Gruber G; Urgell C; Tavernarakis A; Stavrinadis A; Tepsic S; Magén C; Sangiao S; de Teresa JM; Verlot P; Bachtold A
    Nano Lett; 2019 Oct; 19(10):6987-6992. PubMed ID: 31478676
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strong gate coupling of high-Q nanomechanical resonators.
    Sulkko J; Sillanpää MA; Häkkinen P; Lechner L; Helle M; Fefferman A; Parpia J; Hakonen PJ
    Nano Lett; 2010 Dec; 10(12):4884-9. PubMed ID: 21053964
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrasensitive mass sensing with a nanotube electromechanical resonator.
    Lassagne B; Garcia-Sanchez D; Aguasca A; Bachtold A
    Nano Lett; 2008 Nov; 8(11):3735-8. PubMed ID: 18939809
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Force sensitivity of multilayer graphene optomechanical devices.
    Weber P; Güttinger J; Noury A; Vergara-Cruz J; Bachtold A
    Nat Commun; 2016 Aug; 7():12496. PubMed ID: 27502017
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High Quality Factor Mechanical Resonators Based on WSe2 Monolayers.
    Morell N; Reserbat-Plantey A; Tsioutsios I; Schädler KG; Dubin F; Koppens FH; Bachtold A
    Nano Lett; 2016 Aug; 16(8):5102-8. PubMed ID: 27459399
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mode coupling bi-stability and spectral broadening in buckled carbon nanotube mechanical resonators.
    Rechnitz S; Tabachnik T; Shlafman M; Shlafman S; Yaish YE
    Nat Commun; 2022 Oct; 13(1):5900. PubMed ID: 36202803
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coupling carbon nanotube mechanics to a superconducting circuit.
    Schneider BH; Etaki S; van der Zant HS; Steele GA
    Sci Rep; 2012; 2():599. PubMed ID: 22953042
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strongly Coupled Nanotube Electromechanical Resonators.
    Deng GW; Zhu D; Wang XH; Zou CL; Wang JT; Li HO; Cao G; Liu D; Li Y; Xiao M; Guo GC; Jiang KL; Dai XC; Guo GP
    Nano Lett; 2016 Sep; 16(9):5456-62. PubMed ID: 27487412
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reaching silicon-based NEMS performances with 3D printed nanomechanical resonators.
    Stassi S; Cooperstein I; Tortello M; Pirri CF; Magdassi S; Ricciardi C
    Nat Commun; 2021 Oct; 12(1):6080. PubMed ID: 34667168
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An atomic-resolution nanomechanical mass sensor.
    Jensen K; Kim K; Zettl A
    Nat Nanotechnol; 2008 Sep; 3(9):533-7. PubMed ID: 18772913
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strong coupling between single-electron tunneling and nanomechanical motion.
    Steele GA; Hüttel AK; Witkamp B; Poot M; Meerwaldt HB; Kouwenhoven LP; van der Zant HS
    Science; 2009 Aug; 325(5944):1103-7. PubMed ID: 19628816
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrasensitive room-temperature piezoresistive transduction in graphene-based nanoelectromechanical systems.
    Kumar M; Bhaskaran H
    Nano Lett; 2015 Apr; 15(4):2562-7. PubMed ID: 25723099
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transversally and axially tunable carbon nanotube resonators in situ fabricated and studied inside a scanning electron microscope.
    Ning ZY; Shi TW; Fu MQ; Guo Y; Wei XL; Gao S; Chen Q
    Nano Lett; 2014 Mar; 14(3):1221-7. PubMed ID: 24527775
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanotube mechanical resonators with quality factors of up to 5 million.
    Moser J; Eichler A; Güttinger J; Dykman MI; Bachtold A
    Nat Nanotechnol; 2014 Dec; 9(12):1007-11. PubMed ID: 25344688
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A macroscopic mechanical resonator driven by mesoscopic electrical back-action.
    Stettenheim J; Thalakulam M; Pan F; Bal M; Ji Z; Xue W; Pfeiffer L; West KW; Blencowe MP; Rimberg AJ
    Nature; 2010 Jul; 466(7302):86-90. PubMed ID: 20596016
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanical detection of carbon nanotube resonator vibrations.
    Garcia-Sanchez D; San Paulo A; Esplandiu MJ; Perez-Murano F; Forró L; Aguasca A; Bachtold A
    Phys Rev Lett; 2007 Aug; 99(8):085501. PubMed ID: 17930953
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Parametric strong mode-coupling in carbon nanotube mechanical resonators.
    Li SX; Zhu D; Wang XH; Wang JT; Deng GW; Li HO; Cao G; Xiao M; Guo GC; Jiang KL; Dai XC; Guo GP
    Nanoscale; 2016 Aug; 8(31):14809-13. PubMed ID: 27447924
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.